首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  Buffering mechanisms in an acidic mine lake in Lusatia, Germany were investigated. The titration curve has four sections with different buffering mechanisms: (1) buffering by free hydrogen ions and hydrogen sulphate (pH = 2.55-2.9), (2) buffering by Fe with bound SO4 (pH = 2.9-4.3), (3) buffering by Al with bound SO4 (pH = 4.3-5.5), and (4) buffering by surface exchange of SO4 and basic cations (pH > 5.5). Three different phase models were applied to simulate the titration curve: (1) an iron and aluminium hydroxide model; (2) an iron and aluminium hydroxysulphate model; and (3) an iron hydroxide model with surface exchange for SO4, Ca, and Mg, coupled with an aluminium hydroxysulphate model. The uncertainty of model input parameters was accounted for in a sensitivity analysis. Only the third model, which considers surface exchange, was able to adequately reproduce the measured titration curve.  相似文献   

2.
The recovery of iron oxides from acid mine drainage (AMD) has attracted extensive research attention due to the double advantage of waste minimization and resource recovery. Recently a novel air–cathode fuel cell approach was proposed to in-situ utilize ferrous iron (Fe(II)) in the AMD for the fabrication of Fe3O4/graphite felt (GF) composite as the cathode of electro-Fenton process. In the present work, the influence of fuel cell operating parameters, including solution pH, carbonate concentration and Fe(II) concentration, on the catalytic activity of prepared Fe3O4/GF composite is adequately elucidated. The highest activity is observed on the composite obtained from the fuel cell operated with 30 mM Fe(II) and 50 mM carbonate at pH 7.5. The activity of Fe3O4/GF is strongly dependent upon iron loading and Fe3O4 morphology in the composite. Higher iron loading generally induces higher catalytic activity, and the Fe3O4 aggregate is catalytically less reactive relative to the well-dispersed one. The precipitation of Fe(III) oxides on the GF through electrochemical oxidation of Fe(II) plays a key role in determining the structure of Fe3O4/GF composite. Solution pH and composition in the fuel cell affect such a process by manipulating the distribution of Fe(II) species in aqueous solution and on the GF.  相似文献   

3.
The article gives a report on integrated experimental research into targeted change of chemical and phase composition of surface and increase in contrast of physicochemical, electrical and electrochemical properties of tantalite, columbite and zircon under treatment by acid product of water electrolysis—anolyte (pH < 5) and by muriatic solution (HCl, pH 3–3.5). The X-ray photoelectron spectroscopy, high resolution spectroscopy and chemical and electrophysical techniques reveal the mechanism of structural–chemical surface transformation of tantalite, columbite, zircon and feldspar under leaching in acid solutions; this surface transformation mechanism consists in activation of dissolving of iron- and silicate-containing surface films and high-rate oxidation of iron atoms in surface layer of tantalite and columbite, with transition of Fe(II) to Fe(III) and surface destruction of zircon, with formation of oxygenvacant defects of SiO3 2? and SiO2 0 type under influence of anolyte.  相似文献   

4.
A one-dimensional numerical finite volume model is presented to simulate pyrite oxidation and reactive transportation of the oxidation products in a pyritic, carbonate-rich, coal waste pile. The proposed model incorporates the shrinking core concept for describing pyrite oxidation, pyrite surface area reduction, oxygen diffusion, and transport of the oxidation products through the waste pile. The model governing equations were solved using the PHOENICS computational fluid dynamics model. The accuracy of the model was verified with field data. Pyrite oxidation was more intense at shallower depths where oxygen decreased almost linearly from the pile surface to an approximate depth of 2 m. The lowest pH, 3.5, was predicted at a depth of 0.5 m. The waste pile has high neutralisation potential due to buffering by carbonate minerals. The maximum concentration of SO4 2?, 31.6 mol/m3, was predicted at an approximate depth of 4 m and to remain constant throughout the rest of waste profile. Simulation of a scenario with a cap shows that iron and sulphate was removed from the upper parts of the pile; their peak concentrations shifted downward due to dilution. Oxygen source removal limited iron and sulphate production. These results will be useful for developing an appropriate remediation scheme.  相似文献   

5.
To evaluate the design and operation of a new active treatment system for acid mine drainage (AMD), the behavior of ferric iron solutions after the addition of bicarbonate ions was investigated. The effects of various other factors common to AMD on the precipitation rate of iron were also studied. It was found that the rate of Fe III precipitation in synthetic AMD was not affected by the presence of Al or Mn, within the concentration ranges investigated (for Al, 0-0.01 M, for Mn, 0-0.002 M). Our experiments showed that the induction time (tmd),i.e., the time elapsed between the addition of base ions and the detection of iron precipitation, decreased with increasing iron concentration and pH but increased with increasing sulfate concentration: log tind=6.7(±0.30)?1.29 (±0.10) pH+0.94(±0.07) log [SO4]?0.36 (±0.05) log [Fe] Our results suggested that sulfate sorbed to the surface of growing iron oxyhydroxides, inhibiting their growth. This effect offers an important tool that can be used to control the precipitation of iron in AMD treatment facilities.  相似文献   

6.
Laboratory studies were conducted to investigate the removal or management of thiosalts within the lime-neutralization process, to prevent or minimize the adverse effects of thiosalts that cause delayed acidity to downstream environment. The oxidizing reagent hydrogen peroxide (H2O2) and the pH stabilizing (buffering) reagents carbon dioxide (CO2), sodium bicarbonate (NaHCO3) and sodium carbonate (Na2CO3) were examined for removal and management of thiosalts, respectively. Chemical oxygen demand (COD) was determined to be a proxy for thiosalts and was employed for their rapid assessment. The Target Level of thiosalts harmless to aquatic life was found to be 30 mg/L or less. The optimized lime-neutralization process required a pH level of 9.5–10 and aeration. Over-liming to pH levels >11 did not provide excess alkalinity, hardness, or a decrease in thiosalt levels.Addition of H2O2 to either the acid or lime-neutralized water at a molar H2O2:S2O3 ratio of 1–1.5 removed thiosalts to safe levels. About 10–15 min. at room temperature was ample time low temperatures slowed down the process but the dosages were not affected. Removal of thiosalts from 170 to 30 mg/L caused a decrease in pH from 9.6 to 6.5. Among the buffering reagents studied, both NaHCO3 and Na2CO3 provided adequate buffering and a stable pH of 7 to the lime-neutralized water; whereas CO2 resulted in poor buffering and an unstable pH that remained below 6. In cold temperatures, NaHCO3 and Na2CO3 also outperformed CO2 with higher alkalinity and hardness. Na2CO3 addition to lime neutralized water at pH 9.5 was found to be the most cost-effective option. Other methods could have niche applications, depending on seasonal variations and temperature.  相似文献   

7.
An “in-lake” reactor system was developed to treat acidic mining lakes. The reactor uses the microbial processes of sulfate reduction and iron reduction followed by precipitation of iron sulfides to remove acidity, sulfur, and iron from the lake water. The basic reactor design is a straw-filled tube, which was vertically installed in the water column of an enclosure in the lake. Bottom water was pumped through the reactor, and ethanol was continuously fed as substrate for the microbial processes. Microbial sulfate reduction and iron reduction took place inside the reactor, even under acidic conditions. Overdosage of substrate led to the accumulation of the potentially toxic intermediates H2S and acetate. Leakage of ethanol led to anoxic conditions in the entire enclosure, followed by accumulation of H2S in the water column. Sulfides were not precipitated because the pH was never above 3.8. Mixing of the water column in autumn introduced oxygen into the system and led to reoxidation of the H2S. Future designs of in situ reactors to treat acidic mine drainage should consider that the limiting step is not the microbial formation of alkalinity but the fixation of the alkalinity gain as pyrite.  相似文献   

8.
Three metal-rich, acidic mine waters (from Bersbo and Ljusnarsberg, Sweden) were mixed with alkaline fly ash leachates in various proportions, representing a pH titration. Changes in pH and the loss of metals in solution due to precipitation of solid phases were tracked. Mineral equilibria and changes in pH and alkalinity were simulated using the geochemical code PHREEQC and the MINTEQv4 database, and the measured and simulated pH responses were compared. The formation of solid precipitates corresponded to fairly well-defined pH-buffering regions, reflecting the mine water compositions (notably the levels of Fe, Al, and Mn). Zn precipitation had a distinct buffering effect at near-neutral pH for the mine waters not dominated by iron. The formation of solid Mg phases (carbonate, as well as hydroxide) was indicated at high pH (above 9), but not formation of solid Ca phases, despite high sulfate levels. The phases that precipitated were various amorphous mixtures, mostly of the metals Fe, Al, Mn, Zn, and Mg. For the Fe-rich mine water, pH was poorly simulated with a simple MIX model, while alkalinity predictions agreed reasonably well with measured data. For the Al-rich mine waters, the simulated pH responses agreed well with the measurements. In an additional step, geochemical simulations were performed where selected proxy phases for major elements were forced to precipitate; this significantly improved the pH and alkalinity predictions. This approach may be more efficient than performing mixing experiments and titrations.  相似文献   

9.
《Minerals Engineering》2006,19(1):62-71
Electrochemical behavior of chalcopyrite was investigated in the absence and presence of dithiophosphate (DTP) and dithiophosphinate (DTPI), selective thiols against Fe-sulfides in the flotation of sulfide ores, in potentiostatically controlled electrochemical condition. Diffuse reflectance Fourier transformation (DRIFT) spectroscopy was applied to determine the type of adsorbed collector species, and Hallimond tube flotation tests were performed to clarify the role of polarization potential and thiol collectors on the floatability of chalcopyrite. DRIFT spectroscopy study proposed that dithiolate of DTP, (DTP)2, was the major surface compound formed under oxidizing potentials in slightly acidic and neutral conditions. However, DTP species formed on mineral surface in alkaline condition could not be determined possibly due to heavy surface coating of metal oxyhydroxides. DTPI species formed on chalcopyrite was found to be in the form of CuDTPI + (DTPI)2. Additionally, presence of adsorbed DTPI, DTPI0, was also detected. Self-induced floatability was significantly high particularly in slightly acidic condition and decreased by increasing pH due to surface coating of metal oxyhydroxides. Addition of both collectors improved the flotation performance at all pH values. However, the positive effect of DTP at high alkaline pH values was lower than that of DTPI. This was attributed to weak collecting property and lower hydrocarbon chain length of DTP compared to DTPI. Effect of pulp potential could not be observed in slightly acidic condition, but it became apparent at higher pHs. Although better flotation responses were obtained in mildly oxidizing potentials, both collectors enlarged the floatability potential range of chalcopyrite.  相似文献   

10.
Abstract.  In the Eastern Middle Anthracite field of Pennsylvania, a formerly acidic (pH = 3.6) surface mine lake (initially approximately 45,000m3 in volume) is being reclaimed using fluidized bed combustor (FBC) ash. The pH of the water in the pit dramatically increased when the alkaline ash was added. The pH of the water is now well buffered, and has not dropped below a value of 11.0 since March 2000. Analysis of data from samples collected over the past six years indicate that the lakes alkalinity is controlled by carbonate, silicate, and hydroxide reactions. The relative importance of these factors varies with ash input, and can be determined in a predictable fashion. Laboratory tests determined that the mass of CaO was more significant than the particle surface area on the pH of the solution. Using only alkaline material, the transition between caustic and carbonate alkalinity was apparent, though this did not account for interaction with silicate minerals, which should be considered when using alkaline ash for reclamation. Field data indicate that with time, the pH will again decrease but will be buffered by calcite present on both the upper walls of the mine pool and within pores of the FBC ash. Less than 1% of the ash is currently used to increase the pH and alkalinity, so a large reserve exists for long term buffering capacity.  相似文献   

11.
The mines of Butte, Montana include over 16,000 km of abandoned underground workings, most of which are now filled with water. The feasibility of using the flooded mine workings as a source of irrigation water was investigated. The geochemistry and stable isotopic composition of water produced during a 59 day pumping test of the flooded Belmont Mine workings are described. Although static water in the pumping well initially met proposed irrigation standards, the quality deteriorated during pumping as water from deeper in the mine complex was drawn into the well. Stable isotopes show that this lower-quality water was not sourced from the nearby Berkeley Pit lake, but most likely came from the mine shaft itself. At steady state, the water pumped to the surface had pH 5.5–6.0 with high concentrations (in mg/L) of dissolved SO4 (1,600), Fe (160), Mn (19), Zn (15), and As (1.8). Despite substantial bicarbonate alkalinity (≈150 mg/L as CaCO3), the water became strongly acidic after equilibration with air due to oxidation and hydrolysis of Fe2+. Benchtop experiments were performed to test different strategies for low-cost chemical treatment prior to irrigation. The most feasible alternative involved aeration (to remove large quantities of dissolved CO2) prior to pH adjustment to >9 with lime or NaOH. Further work is needed to see if such treatment is economically viable compared to the cost of using municipal water. Another concern is whether irrigation of grass with high TDS, high sulfate water is sustainable. The mine water reached a steady-state temperature of 19°C during pumping, and therefore the possibility of using this water to help heat nearby buildings should also be explored.  相似文献   

12.
Under specific controlled conditions, the addition of SO2 to oxygen or air produces the peroxy-monosulphate free radical in solution, which is a stronger oxidant than oxygen alone. In this study, the practical strategies required to optimise the oxidation of Fe(II) with SO2/air was investigated at 75 °C as part of a process to remove iron as Fe(III) oxides from a synthetic nickel laterite high pressure acid leach solution containing 5 g/L Fe(II), 1 g/L Fe(III), 8 g/L Ni, 30 g/L Mg in sea water at pH about 2. The rate of Fe(II) oxidation was optimised in the pH range of 1.2–2.0 with respect to SO2/air ratio and gas flow rates for minimum production of H2SO4 and maximum utilisation of SO2. In order to minimise the air flow rates into the reactor vessel, the maximum rate of SO2 addition that could be employed with air was established whilst maintaining oxidising conditions. The results provide strategies for commercial applications of the SO2/air oxidising system and indicate important factors for reactor design.  相似文献   

13.
The matrix composition and surface chemistry of high iron pyrochlore (Fe pyrochlore) grains from Niobec (St-Horone carbonatite deposit) were analyzed, in order to identify a potential relationship between Fe pyrochlore matrix composition and the related effect on cationic collector adsorption (tallow diamine). SEM–EDX analyses indicate compositional zoning in the structure Fe pyrochlores. TOF-SIMS was used to analyse the surface of different compositional zones of Fe pyrochlore, in order to identify their related effects on tallow diamine adsorption. Surface analyses of high and low iron zones of treated Fe pyrochlore show that species indicative of the collector favour the regions of low iron content The low iron areas also show a lower relative proportion of species indicative of oxidation. This study identifies the link between Fe pyrochlore compositional zoning, surface oxidation and, area selective collector loading.  相似文献   

14.
A laboratory study was undertaken using mine tailings and soil columns to evaluate some of the natural processes that can control the mobility of metals at Pb–Ag mine tailings impoundments. The effects of buffering, pH, and salinity were examined with tailings from the El Arteal deposit. Al, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Sr, and Zn were mobilized when the tailings were leached. However, when the mine tailings were placed above alluvial soils, Al, Ba, Cd, Cu, Mn, Pb, and Zn were retained, although Fe and Sr clearly remained mobile. Most of the metal retention appears to be associated with the increase in pH caused by calcite dissolution. The sorption of some metals (Cu, Pb, and Zn) onto oxyhydroxides of Fe and Mn, sulphates, clay materials, and organic matter may also explain the removal of these metals from the leachate.  相似文献   

15.
Fourteen samples from the Haveri Au–Cu mine tailings were studied by reflected-light microcopy, scanning electron microscopy, X-ray powder-diffraction, and sequential extraction methods, and 12 water samples were analyzed for total and dissolved elements to delineate the extent of sulfide oxidation and its impact on nearby surface waters. Water-soluble, adsorbed-exchangeable-carbonate (AEC), Fe (oxy)hydroxides, Fe oxide, and Fe sulfide fractions were extracted sequentially. The oxidation layer was found to vary from 50 to 140 cm: the upper part was nearly depleted in primary sulfides, especially pyrrhotite [Fe(1?x)S] and pyrite (FeS2); in the lower part, discontinuous cemented layers were detected. Secondary Fe (oxy)hydroxides and Fe oxyhydroxysulfates were abundant in the oxidation layer and were slightly enriched in trace elements, including As (up to 80 mg/kg), Cu (300 mg/kg), and Zn (150 mg/kg). Almost half of the As (average 25 mg/kg) were present as secondary minerals susceptible to redissolution. The pH of the vadose tailings varied from 2.46 to neutral, and the total sulfur content varied from 1 to 6.5% (average 2.9%). Aqua regia extraction showed that the Haveri tailings are characterized by low concentrations of the elements Cd, Cr, Pd, and slightly elevated concentrations of As, which are present at very low concentrations in the surface water (<6 μg/L). However, runoff that flows on top of the tailings and discharges into the nearby lake carries Co, Cu, Ni, and Zn (concentrations of each range from 500 to 1,800 μg/L). Additionally, dissolution of sulfides and Fe precipitates may mobilize trace metals in the ground water. Thus, overall, there is a small continuous release of AMD into Lake Kirkkojärvi, but the environmental impacts to the lake are presently small.  相似文献   

16.
The Chemistry of Waters Associated with Metal Mining in Macedonia   总被引:1,自引:0,他引:1  
Abstract  Pollution from current and past mining is a significant problem in several parts of the former Yugoslav Republic of Macedonia. Water from six different mining areas in Macedonia was analysed to assess the effects of metalliferous mining activities. Drainage sediments at all locations show evidence of physical and chemical contamination; water compositions, however, were more variable. Low pH water associated with mining has led to the dissolution of minerals and the mobilization of metals from the ores and the host rocks. Only Sb was noted to exhibit enhanced mobility in higher pH waters. The Zletevo Pb-Zn mine discharges low pH water that has high levels of several metals, including Al, Zn, Cd, and Fe; sediment concentrations are grossly elevated for several km downstream. Toranica and Sasa Pb-Zn mines exhibit similar sediment contamination of Pb, Zn, Cd, and other ore-related metals. However, concentrations of metals in waters are far lower at both of these mines, due to less pyrite in the ore and the buffering of the acid waters by carbonate host lithologies. At the Buchim copper mine, waters are both acidic and high in dissolved solids; Cu concentrations exceed 100 mg/L. Krstov Dol and Alshar are small, disused As-Sb mines that discharge waters that exceed potable values for some contaminants (e. g. As), but this may be related to the mineralization of the bedrock rather than the mines. In general, metal concentrations decreased downstream from the source due to dilution from other rivers and coprecipitation of metals on other mineral phases (e. g. Fe-, Al- and Mn-oxides, and hydroxides).  相似文献   

17.
Use of limonitic laterite as an iron source in conventional ironmaking is restricted due to its gangue composition and small particle size. Even direct reduction cannot effectively produce direct reduced iron (DRI) because NiO would be reduced together with iron oxide to form Fe–Ni. A small amount of Ni (about 2 wt.%) in DRI degrades the physical properties of final steel products. The current study investigated how oxidation roasting of limonitic laterite ores affected NiO reduction, with the goal of producing Ni-free DRI and Ni-bearing slag. Ni-bearing slag can be a good secondary Ni resource. Oxidation roasting made NiO inert under H2 reduction at 900 °C by forming Ni-olivine. Optimum roasting temperature was proposed by examining phase transformation of limonitic laterite ores during heating and by FactSage calculation of the equilibrium Ni fraction in Ni-bearing phases. Furthermore, the effect of Mg–silicate forming additives on the control of NiO reducibility was clarified to maximize the suppression of NiO reduction. Among various additives such as MgSiO3, Mg2SiO4 and Fe–Ni smelting slag, Ni-free olivine-typed flux was found to be the most effective form of Ni-olivine because Ni–Mg ion exchange between Ni-bearing phase and Ni-free olivine occurs more readily than other Ni-olivine formation schemes. Finally, the mechanism of Ni-olivine formation during roasting was studied using a diffusion couple test. Calculated diffusivity values of Ni in Mg2SiO4 indicated that the two major routes of Ni-olivine formation while roasting limonitic laterite ore are (1) Ni partitioning within Mg–Ni silicate before crystallization and (2) Ni diffusion from spinel to Ni free olivine after crystallization.  相似文献   

18.
The treatment of acid mine drainage (AMD) and circumneutral mine water (CMW) with South African coal fly ash (FA) provides a low cost and alternative technique for treating mine wastes waters. The sulphate concentration in AMD can be reduced significantly when AMD was treated with the FA to pH 9. On the other hand an insignificant amount of sulphate was removed when CMW (containing a very low concentration of Fe and Al) was treated using FA to pH 9. The levels of Fe and Al, and the final solution pH in the AMD–fly ash mixture played a significant role on the level of sulphate removal in contrast to CMW–fly ash mixtures. In this study, a modelling approach using PHREEQC geochemical modelling software was combined with AMD–fly ash and/or CMW–fly ash neutralization experiments in order to predict the mineral phases involved in sulphate removal. The effects of solution pH and Fe and Al concentration in mine water on sulphate were also investigated. The results obtained showed that sulphate, Fe, Al, Mg and Mn removal from AMD and/or CMW with fly ash is a function of solution pH. The presence of Fe and Al in AMD exhibited buffering characteristic leading to more lime leaching from FA into mine water, hence increasing the concentration of Ca2+. This resulted in increased removal of sulphate as CaSO4·2H2O. In addition the sulphate removal was enhanced through the precipitation as Fe and Al oxyhydroxysulphates (as shown by geochemical modelling) in AMD–fly ash system. The low concentration of Fe and Al in CMW resulted in sulphate removal depending mainly on CaSO4·2H2O. The results of this study would have implications on the design of treatment methods relevant for different mine waters.  相似文献   

19.
The treatment of acid rock drainage (ARD) places extraordinary financial burdens on governments and companies worldwide, and an improved efficiency in treatment by as little as 1% can save many millions of dollars in rehabilitation. We investigated a system for treating Fe-rich ARD using a three-stage reactor design. In the first reaction cell, Fe-rich ARD was partially neutralised using rapid periodic carbonate resuspension with a rotating axial mixer. This was followed by an air-sparged oxidation chamber and then a second reaction cell, with more carbonate periodically resuspended until a pH of 6.3 was reached, which was followed by a settlement chamber. This reactor design has a high capacity for neutralisation, with an efficiency of ≈70% of acidity neutralised by the acid neutralising capacity (g of CaCO3 equivalent) added to the reactor. Axial mixers were tested because of their low-energy requirements and their high reliability. The intermediate chamber effectively removes Fe by oxidising Fe(II) to Fe(III). Given the amount of acidity neutralised, the sludge volume produced was low compared to other technologies, providing further potential savings in sludge handling. Waste carbonate rock proved to be an effective neutralising agent, even though it was about 60% dolomite and 40% magnesite, with minor calcite, and despite the fact that magnesite has substantially slower dissolution kinetics compared to the more dominant dolomite. The mixed waste carbonates were capable of raising the pH sufficiently to reduce the heavy metal loadings in Fe-rich ARD by more than two orders of magnitude. The final settlement stage of the process was shown to be essential for metal precipitation, for the carry-over of fine carbonates, and CO2 loss. This was associated with a rise in pH, from 6.3 to 7.5. In addition, residual slow-reacting magnesite from the mixed carbonate remains in the sludge from the first reactor and provides acid buffering capacity within the sludge, which is commonly lacking in the ARD neutralisation sludge of other systems.  相似文献   

20.
Abstract.   This paper describes pilot scale tests of a novel process for the neutralisation of acidic mine water. Leachate from a waste coal dump was neutralised with limestone, and iron, aluminium, and sulphate were removed. Specific aspects studied were: the process configuration; the rates of iron oxidation, limestone neutralisation, and gypsum crystallisation; the chemical composition of the effluents before and after treatment; the efficiency of limestone utilisation; and the sludge solids content. The acidity was decreased from 12,000 to 300 mg/L (as CaCO3), sulphate from 15,000 to 2,600 mg/L, iron from 5,000 to 10 mg/L, aluminium from 100 to 5 mg/L, while the pH increased from 2.2 to 7.0. Reaction times of 2.0 and 4.5 h were required under continuous and batch operations respectively for the removal of 4 g/L Fe (II). The iron oxidation rate was found to be a function of the Fe (II), hydroxide, oxygen, and suspended solids (SS) concentrations. The optimum SS concentration for iron oxidation in a fluidised-bed reactor was 190 g/L. Up-flow velocity had no influence on the rate of iron oxidation in the range 5 to 45 m/h. Sludge with a high solids content of 55% (m/v) was produced. This is high compared to the typical 20% achieved with the high density sludge process using lime. It was determined that neutralisation costs could be reduced significantly with an integrated iron oxidation and limestone neutralisation process because limestone is less expensive than lime, and a high-solids-content sludge is produced. Full scale implementation followed this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号