首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linewidth of laterally loss-coupled distributed feedback (DFB) lasers based on InAs quantum dots (QDs) embedded in an InGaAs quantum well (QW) is investigated. Narrow linewidth operation of QD devices is demonstrated. A linewidth-power product less than 1.2 MHz /spl middot/ mW is achieved in a device of 300-/spl mu/m cavity length for an output power up to 2 mW. Depending on the gain offset of the DFB modes from the QD ground state gain peak, linewidth rebroadening or a floor is observed at a cavity photon density of about 1.2-2.4/spl times/10/sup 15/ cm/sup -3/, which is much lower than in QW lasers. This phenomenon is attributed to the enhanced gain compression observed in QDs.  相似文献   

2.
We report time-resolved measurements of the linewidth enhancement factors (-factors) , and , associated with the adiabatic carrier recovery, carrier heating, and two-photon absorption dynamical processes, respectively, in semiconductor optical amplifiers (SOAs) with different degrees of dimensionality-one InAs/InGaAsP/InP quantum dot (0-D), one InAs/InAlGaAs/InP quantum dash (1-D), and a matching InGaAsP/InGaAsP/InP quantum well (2-D)-all operating near 1.55- wavelengths. We find the lowest values in the QD SOA, 2-10, compared to 8-16 in the QW, and values of and that are also lower than in the QW. In the QD SOA, the -factors exhibit little wavelength dependence over the gain bandwidth, promising for wide-bandwidth all-optical applications. We also find significant differences in the -factors of lasers with the same structure, due to the differences between gain changes that are induced optically or through the electrical bias. For the lasers we find the QW structure instead has the lower -factor, having implications for directly modulated laser applications.  相似文献   

3.
An experimental comparative study of the gain, index variation, and linewidth enhancement factor in 980-nm quantum-well (QW) and quantum-dot (QD) lasers structures, designed for high power applications, is presented. The gain spectra of the QW lasers at high injection level revealed three different transition energies, with a low linewidth enhancement factor (/spl sim/1.2) for E2HH2 transitions. Similar values for the linewidth enhancement factor, ranging between 2.5 and 4.5, were found for QW and QD devices, when comparing at similar values of the peak gain. This result is attributed to the contribution of excited state transitions in the measured QD lasers.  相似文献   

4.
Mode-locked lasers (MLLs) and semiconductor optical amplifiers (SOAs) based on quantum-dot (QD) gain material will impact the development of next-generation networks, such as the 100 Gb/s Ethernet. MLLs presently consisting of a monolithic two-section device already generate picosecond pulse trains at 40 GHz. Temperature dependence of pulsewidth for p-doped devices, a detailed chirp analysis that is a prerequisite for optical time-division multiplexing applications, and data transmission experiments are presented in this paper. QD SOAs show superior performance for linear amplification as well as nonlinear signal processing. Using cross-gain modulation for wavelength conversion, QD SOAs are shown to have a small signal bandwidth beyond 40 GHz under high-bias current injection. This makes QD SOAs much superior to conventional SOAs.   相似文献   

5.
An improved three-arm airbridge contacted microdisk diode structure is presented. Continuous-wave lasing from InGaAs quantum dot (QD) in a /spl sim/4-/spl mu/m-diameter microdisks is reported with the threshold current /spl sim/40 /spl mu/A at T=5 K. With the increase of injection current, the QD's emission blueshifts due to the band-filling effect, while the laser mode peak redshifts by thermal effect. When the QD's gain spectra shift out of alignment with the lasing mode, the next available whispering gallery mode starts lasing from QD wetting layer. The thermal heating effect is discussed by investigating the modes redshift with respect to injection current.  相似文献   

6.
A semiconductor laser containing seven InAs-InGaAs stacked quantum-dot (QD) layers was grown by molecular beam epitaxy. Shallow mesa ridge-waveguide lasers with stripe width of 120 /spl mu/m were fabricated and tested. A high modal gain of 41 cm/sup -1/ was obtained at room temperature corresponding to a modal gain of /spl sim/6 cm/sup -1/ per QD layer, which is very promising to enable the realization of 1.3-/spl mu/m ultrashort cavity devices such as vertical-cavity surface-emitting lasers. Ground state laser action was achieved for a 360-/spl mu/m-cavity length with as-cleaved facets. The transparency current density per QD layer and internal quantum efficiency were 13 A/cm/sup 2/ and 67%, respectively.  相似文献   

7.
A Ge quantum dot (QD) light-emitting diode (LED) is demonstrated using a MOS tunneling structure for the first time. The oxide film was grown by liquid phase deposition at 50/spl deg/C to reduce the thermal budget. The infrared emission of /spl sim/1.5 /spl mu/m was observed from Ge QD MOS LEDs, similar to the p-type-intrinsic-n-type structure reported previously. At the negative gate bias, the electrons in the Al gate electrode tunnel to the Ge QD through the ultrathin oxide and recombine radiatively with holes to emit the /spl sim/1.5/spl mu/m infrared. The electrons also recombine with holes in the Si cap, and the band edge emission from Si is also observed.  相似文献   

8.
Stacked InAs/InGaAs quantum dots are used as an active media of metamorphic InGaAs-InGaAlAs lasers grown on GaAs substrates by molecular beam epitaxy. High quantum efficiency (/spl eta//sub i/>60%) and low internal losses (/spl alpha/<3-4 cm/sup -1/) are realised. The transparency current density per single QD layer is estimated as /spl sim/70 A/cm/sup 2/ and the characteristic temperature is 60 K (20-85/spl deg/C). The emission wavelength exceeds 1.51 /spl mu/m at temperatures above 60/spl deg/C.  相似文献   

9.
Phase dynamics of semiconductor optical amplifiers at 10-40 GHz   总被引:2,自引:0,他引:2  
The phase dynamics that occur in bulk InGaAsP-InP semiconductor optical amplifiers (SOAs) in response to picosecond pulse excitations at 10 and 40 GHz are studied experimentally and numerically for various amplifier lengths. The time dependencies of the phase changes and of the absolute gain of the amplifier are measured simultaneously. The total phase shifts induced by 1.5-ps pulses at 10 GHz are higher than /spl pi/ in SOAs with active region lengths between 0.5 and 2 mm and exceed 2/spl pi/ in a 1.5-mm-long amplifier. Phase shifts above /spl pi/ are measured at 40 GHz in 1.5- and 2-mm-long SOAs. The dependence of the total phase shift on the amplifier bias current and length and on pump pulse energy is investigated. Numerical simulations based on a comprehensive time-domain SOA model allow us to confirm the experimental results for a wide range of amplifier parameters. In particular, SOAs with lengths up to 5 mm have been modeled, and the calculations suggest that the maximum phase shifts occur in amplifiers of approximately 2-mm length. The phase dynamics measurements are illustrated at the example of an optical time division multiplexing add-drop multiplexer, based on a SLALOM switch, gated by 10- or 40-GHz control pulses. We find that simultaneous good dropping and clearing is possible if the length and the operating conditions of the SOA in the switch are chosen such as to induce a full /spl pi/ phase shift.  相似文献   

10.
Quantum computing with superconductors   总被引:2,自引:0,他引:2  
Superconductive technology is one of the most promising approaches to quantum computing because it offers devices with little dissipation, ultrasensitive magnetometers, and electrometers for state readout, large-scale-integration, and a family of classical electronics that could be used for quantum bit (qubit) control. The challenges this technology faces, however, are substantial: for example, control of the qubit to a part in /spl sim/10/sup 4/ must be accomplished with analog control pulses. But even after this is done, the accuracy is limited by the unavoidable decay of quantum information in the system. Recent experiments suggest the time over which this decay occurs is <1 /spl mu/s, though it is expected to lengthen as experimental methods improve. A 1-/spl mu/s decay time would mandate a very difficult to achieve maximum time of /spl sim/100 ps per analog operation. Thus, quantum computing is, simultaneously a promising technology for solving certain very hard problems in computer science and a daunting challenge for those working to develop that technology.  相似文献   

11.
Recent results on GaAs-based high-speed mode-locked quantum-dot (QD) lasers and optical amplifiers with an operation wavelength centered at 1290 nm are reviewed and their complex dependence on device and operating parameters is discussed on the basis of experimental data obtained with integrated fiber-based QD device modules. Hybrid and passive mode locking of QD lasers with repetition frequencies between 5 and 80 GHz, sub-ps pulse widths, ultralow timing jitter down to 190 fs, high output peak power beyond 1 W, and suppression of Q-switching are reported, showing the large potential of this class of devices for O-band optical fiber applications. Results on cw and dynamical characterization of QD semiconductor optical amplifiers (SOAs) are presented. QD amplifiers exhibit a close-to-ideal noise figure of 4 dB and demonstrate multiwavelength amplification of three coarse wavelength division multiplexing (CWDM) wavelengths simultaneously. Modelling of QD polarization dependence shows that it should be possible to achieve polarization insensitive SOAs using vertically coupled QD stacks. Amplification of ultrafast 80 GHz optical combs and bit-error-free data signal amplification at 40 Gb/s with QD SOAs show the potential for their application in future 100 Gb Ethernet networks.  相似文献   

12.
We report an experimental evaluation of the performance of silicon (Si) photodetectors incorporating one-dimensional (1-D) arrays of rectangular and triangular-shaped nanoscale structures within their active regions. A significant (/spl sim/2/spl times/) enhancement in photoresponse is achieved in these devices across the 400- to 900-nm spectral region due to the modification of optical absorption properties that results from structuring the Si surface on physical optics scales smaller than the wavelength, which both reduces the reflectivity and concentrates the optical field closer to the surface. Both patterned (triangular and rectangular lineshape) and planar Ni-Si back-to-back Schottky barrier metal-semiconductor-metal photodetectors on n-type (/spl sim/5/spl times/10/sup 14/ cm/sup -3/) bulk Si were studied. 1-D /spl sim/50-250-nm linewidth, /spl sim/1000-nm depth, grating structures were fabricated by a combination of interferometric lithography and dry etching. The nanoscale grating structures significantly modify the absorption, reflectance, and transmission characteristics of the semiconductor: air interface. These changes result in improved electrical response leading to increased external quantum efficiency (from /spl sim/44% for planar to /spl sim/81% for structured devices at /spl lambda/=700 nm). In addition, a faster time constant (/spl sim/1700 ps for planar to /spl sim/600 ps for structured at /spl lambda/=900 nm) is achieved by increasing the absorption near the surface where the carriers can be rapidly collected. Experimental quantum efficiency and photocurrents results are compared with a theoretical photocurrent model based on rigorous coupled-wave analysis of nanostructured gratings.  相似文献   

13.
We discuss in detail a new mechanism of nonlinearity of the light-current characteristic (LCC) in heterostructure lasers with reduced-dimensionality active regions, such as quantum wells (QWs), quantum wires (QWRs), and quantum dots (QDs). It arises from: 1) noninstantaneous carrier capture into the quantum-confined active region and 2) nonlinear (in the carrier density) recombination rate outside the active region. Because of 1), the carrier density outside the active region rises with injection current, even above threshold, and because of 2), the useful fraction of current (that ends up as output light) decreases. We derive a universal closed-form expression for the internal differential quantum efficiency /spl eta//sub int/ that holds true for QD, QWR, and QW lasers. This expression directly relates the power and threshold characteristics. The key parameter, controlling /spl eta//sub int/ and limiting both the output power and the LCC linearity, is the ratio of the threshold values of the recombination current outside the active region to the carrier capture current into the active region. Analysis of the LCC shape is shown to provide a method for revealing the dominant recombination channel outside the active region. A critical dependence of the power characteristics on the laser structure parameters is revealed. While the new mechanism and our formal expressions describing it are universal, we illustrate it by detailed exemplary calculations specific to QD lasers. These calculations suggest a clear path for improvement of their power characteristics. In properly optimized QD lasers, the LCC is linear and the internal quantum efficiency is close to unity up to very high injection-current densities (15 kA/cm/sup 2/). Output powers in excess of 10 W at /spl eta//sub int/ higher than 95% are shown to be attainable in broad-area devices. Our results indicate that QD lasers may possess an advantage for high-power applications.  相似文献   

14.
We realized a triple-stacked 1.3-/spl mu/m InAs quantum dot (QD) with a high density of 2.4/spl times/10/sup 11/ cm/sup -2/ and a high uniformity of below 24 meV that employs an As/sub 2/ source and a gradient composition (GC) strain-reducing layer (SRL) grown on a GaAs substrate. We demonstrated the 1.3-/spl mu/m wavelength emission of this triple-stacked QD laser with a 0.92-mm cavity length and a cleaved facet at room temperature. In addition, we realized the highest maximum modal gain yet reported of 8.1 cm/sup -1/ per QD layer at beyond 1.28 /spl mu/m by using our high-density and high-uniformity QD.  相似文献   

15.
We analyze the magnitude of degenerate two-photon gain of several quantum wells (QWs) in a resonant microcavity which is pumped off-resonantly by an optical field. A set of coupled phenomenological rate equations for electron-hole pairs and photons is derived. In the framework of this model, we make a realistic prediction of the time-integrated two-photon gain and find that a /spl lambda/-cavity containing 11 QWs would give a maximal amplification of /spl sim/2.3% for a peak intensity of /spl sim/80 MW/cm/sup 2/. A better insight into the dependence of the gain on the various physical parameters is given by an analytical formula resulting from various approximations on the rate equations.  相似文献   

16.
A theoretical model is used to analyze the impact of phase noise on the performance of semiconductor optical amplifiers (SOAs) in the saturation regime for differential phase-shift keying (DPSK) applications. It is found that the variance of the differential phase error scales as T/sup 2///spl tau//sub c//sup 2/ for /spl tau//sub c//spl Gt/T, where T is the bit period and /spl tau//sub c/ is the carrier lifetime of the SOA. This suggests that the adverse effect of saturation-induced phase noise can be significantly reduced by increasing the bit rate or the carrier lifetime.  相似文献   

17.
Signal-induced birefringence and dichroism in a tensile-strained bulk semiconductor optical amplifier (SOA) are demonstrated in a counterpropagation scheme. The polarization azimuth rotation and the change of ellipticity angle of the probe light are presented on the Poincare/spl acute/ sphere and can be calculated by the Stokes parameters. All-optical wavelength conversion (inverted/noninverted and upconversion/downconversion) based on cross polarization modulation (XPolM) in SOAs are investigated. It is shown that a bit error rate (BER) of <10/sup -9/ can be achieved and an extinction ratio of > 9 dB can be obtained at a bit rate of 2.488 Gb/s with a 2/sup 31/-1 non-return-to-zero (NRZ) pseudorandom bit sequence (PRBS). Because of the larger birefringence effect induced by the pump light in the longer wavelength range, upconversion shows better performance than downconversion. Compared with the noninverted case, inverted wavelength conversion shows better performance due to the positive contribution from cross gain modulation (XGM), which takes place simultaneously with XPolM.  相似文献   

18.
We present monolithic quantum-dot vertical-cavity surface-emitting lasers (QD VCSELs) operating in the 1.3-/spl mu/m optical communication wavelength. The QD VCSELs have adapted fully doped structure on GaAs substrate. The output power is /spl sim/330 /spl mu/W with slope efficiency of 0.18 W/A at room temperature. Single-mode operation was obtained with a sidemode suppression ratio of >30 dB. The modulation bandwidth and eye diagram in 2.5 Gb/s was also presented.  相似文献   

19.
Self-organized InAs quantum-dot (QD) lasers emitting at 1.5 /spl mu/m were grown by gas source molecular beam epitaxy on (100) InP substrates. Room temperature continuous-wave (CW) operation of QD-based buried ridge stripe lasers is reported. We investigated experimentally the relevant CW performances of as-cleaved InP-based QD lasers for telecom applications such as temperature properties (T/sub 0/=56 K), infinite length threshold current density (J/sub /spl infin///spl sim/150 A/cm/sup 2/ per QDs layer) and internal efficiency (0.37 W/A). Lasing in pulsed mode is observed for cavity length as short as 200 /spl mu/m with a threshold current of about 37 mA, demonstrating the high gain of the QD's active core. In addition, the Henry parameter of these InP-based QD lasers is experimentally determined using the Hakki-Paoli method (/spl alpha//sub H//spl sim/2.2).  相似文献   

20.
We have investigated the characteristics of an In/sub 0.4/Ga/sub 0.6/As self-organized quantum-dot (QD) resonant-cavity photodiode. The QD epitaxy and the design of the two-dimensional photonic crystal cavity are tailored for 1.3-/spl mu/m wavelength operation. The input excitation to the photodiode is provided with an in-plane defect waveguide designed with the same photonic crystal. The measured spectral photocurrent characteristics reflect mode coupling between the waveguide and detector and the resonant cavity effect due to total internal reflection and photonic bandgap confinement. The photocurrent response is explained with a model involving the circulating fields in the cavity. The characteristics are also dependent of cavity size. Enhancement and narrowing (/spl sim/ 10 nm) of the photoresponse at /spl lambda//spl sim/1.3 /spl mu/m are observed. A spectral dip, of /spl sim/ 10-nm width, also observed at 1.3 /spl mu/m is possibly due to the anticrossing mechanism, uniquely present in photonic crystal waveguides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号