首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerous neurotransmitters have been studied in detail in the developing retina. Almost all known neurotransmitters and neuromodulators were demonstrated in vertebrate retinas using formaldehyde-induced fluorescence, uptake autoradiography or immunohistochemistry procedures. Serotoninergic (5HT) amacrine neurons were described in the inner nuclear layer (INL) of the retina with their dendrites spreading within the inner plexiform layer (IPL). The present work describes the morphological pattern of development of serotoninergic amacrine neurons with a stratified dendritic branching pattern in the chick retina from embryonic day 12 to postnatal day 7. Serotoninergic-bipolar neurons are also described. SHT-amacrine neurons have round or pear-shaped somata and primary dendritic trees oriented toward the IPL that runs through the INL, showing several varicosities. Secondary dendrites then go through the INL, without any collateral branch. At the outer and inner margin of the IPL the primary and secondary dendrites originate an outer and an inner serotoninergic network, respectively. When the primary dendritic tree reaches the IPL it deflects laterally in sublayer 1-the outer serotoninergic network. Tertiary branches then arise from the secondary dendrite and deflect in the innermost sublayer of the IPL-the inner serotoninergic network. The final pattern of branching of 5HT amacrine cells was present at embryonic day 14 and was completely developed at hatching. Serotoninergic (5HT) bipolar neurons were also present in the INL at hatching. They are weakly immunoreactive and are probably a subset of bipolar cells that accumulate serotonin from the intersynaptic cleft and are not "true" 5HT neurons.  相似文献   

2.
Parvalbumin (PV) is a calcium-binding protein localized to selected neurons in the nervous system, including the retina. This investigation evaluated the distribution of PV immunoreactivity in the rabbit retina using immunohistochemistry with a monoclonal antibody directed to carp PV. In the inner nuclear layer (INL), PV immunoreactivity was present in horizontal and amacrine cells. In the ganglion cell layer, PV immunostaining was confined to somata that are likely to be both displaced amacrine cells and ganglion cells. PV-immunoreactive (IR) amacrine cells were positioned in the proximal INL adjacent to the inner plexiform layer (IPL). These cells usually gave rise to a single primary process, which arborized into two distinct bands in the IPL. In sublamina a, the processes were thin and had large, irregular endings. In sublamina b, multiple processes branched from the primary process and were characterized by varicosities and spines. PV-IR amacrine cell bodies measured from 8 to 10 microns in diameter. Their density was highest in the visual streak and lowest in the periphery of the superior retina. The average number of PV-IR amacrine cells was 464,045 cells per retina (N = 3), and the average regularity index of the PV-IR cell mosaic was 3.23. PV-IR amacrine cells were further characterized by double-label immunofluorescence experiments using antibodies to PV and tyrosine hydroxylase (TH). Varicose TH-IR processes were in close apposition to many PV-IR amacrine cells and often formed "ring structures" around them. Together, these morphological, quantitative, and histochemical observations indicate that PV immunoreactivity in the INL is localized predominantly to AII amacrine cells, and therefore it is a valuable marker for the identification of this cell type.  相似文献   

3.
Nitric oxide (NO) acts as a modulator of neuronal transmission in mature neuronal systems, including the retina. Recently, NO has also been suggested to have a trophic function during development. We examined immunocytochemically the distribution of NO-producing cells in developing and transplanted rabbit retinas. An antibody detecting the neuronal isoform of its biosynthetic enzyme, nitric oxide synthase (NOS), was used on normal developing retinas [starting at embryonic day (E) 15] and on rabbit retinal transplants after various survival times (1-139 days after surgery). Weakly stained cell bodies were first observed in the proximal margin of the neuroblastic layer at E 29. Stained processes projecting towards a developing inner plexiform layer were also visible at this time point. Immunoreactive cells were located at later stages in the innermost part of the inner nuclear layer and in the ganglion cell layer, and are likely to correspond mainly to amacrine cells. NOS-labelled cells were also found in retinal transplants. The first NOS-labelled cells appeared, as in normal developing retinas, in ages corresponding to E 29 and were still detected in transplants corresponding to postnatal day 123. NOS-labelled cells were seen in areas between rosettes, where amacrine cells are located. NOS-labelled processes were at times seen to project for long distances, forming very distinct plexuses. NOS-containing amacrine cells thus appear both in the transplants and in developing retinas in the embryonic stages, long before synaptic function involving these cells can be expected, suggesting a role for NO not only in neuromodulation but also in retinal development.  相似文献   

4.
The functional state of the amacrine cells which contain enkephalin-, neurotensin- and somatostatin-like immunoreactivity of the chicken retina was monitored by measuring the rate of change in the levels of [Leu]enkephalin-like immunoreactivity in the retina. Dark-adapted birds were exposed to lights of different intensities for 12 h. At light levels of < or = 0.03 microW/cm2, the ENSLI amacrine cells were highly active but, by 0.08 microW/cm2, they reached a state of maximum inactivation. Thus, the ENSLI amacrine cells act as flip-flop devices, inactivated by critical levels of light, which correspond to those which inactivate pineal melatonin synthesis. They may, therefore, be involved in retinal pathways which signal the difference between day and night.  相似文献   

5.
The neural immunoglobulin-like cell adhesion molecule contactin/F11 and the extracellular matrix glycoprotein tenascin-C are prominent molecules in the developing nervous system which interact in in vitro assays (Zisch et al., J. Cell Biol. 119, 203-213). To determine their potential role in neural development, the distribution of tenascin-C and contactin/F11 was examined in the developing chick retina. The onset of both tenascin-C and contactin/F11 expression coincides with the appearance of ganglion cell dendrides and neurites from bipolar and amacrine cells in the inner layer (IPL) at E8, and the extension of bipolar and horizontal cell processes in the outer plexiform layer (OPL) at E9. Contactin/F11 expression is co-ordinately upregulated with the TN190 and TN200 tenascin-C isoforms between embryonic day 8 (E8) and E17, while little, if any, of the TN220 isoform, which does not bind contactin/F11, is detected. In situ hybridization reveals that tenascin-C and contactin/F11 mRNAs are synthesized by different neuronal types. Tenascin-C mRNA probes hybridize to amacrine and displaced amacrine neurons, and horizontal neurons. In cultured retinal cells, tenascin-C is also present on process-bearing neurofilament-positive cells. Contactin/F11 mRNA is detected in bipolar cells or their precursors from E8-9, and later in horizontal and ganglion neurons. The highest levels and greatest overlap in the synaptic IPL and OPL are reached at E17, when the stratification of the retina is nearly complete. These results are consistent with a putative role for contactin/F11-tenascin-C interactions in the establishment of synaptic layers in the retina.  相似文献   

6.
The recently cloned GABA(B) receptors were localized in rat retina using specific antisera. Immunolabelling was detected in the inner and outer plexiform layers (IPL, OPL), and in a number of cells in the inner nuclear layer and the ganglion cell layer. Double-labelling experiments for GABA (gamma-aminobutyric acid) and GABA(B) receptors, respectively, demonstrated a co-localization in horizontal cells and amacrine cells. Electron microscopy showed that GABA(B) receptors of the OPL were localized presynaptically in horizontal cell processes invaginating into photoreceptor terminals. In the IPL, GABA(B) receptors were present presynaptically in amacrine cells, as well as postsynaptically in amacrine and ganglion cells. The postnatal development of GABA(B) receptors was also studied, and immunoreactivity was observed well before morphological and synaptic differentiation of retinal neurons. The present results suggest a presynaptic (autoreceptor) as well as postsynaptic role for GABA(B) receptors. In addition, the extrasynaptic localization of GABA(B) receptors could indicate a paracrine function of GABA in the retina.  相似文献   

7.
We have studied the distributions of group II metabotropic glutamate receptors, mGluR2 and mGluR3, and a group III metabotropic glutamate receptor, mGluR4, in the adult rat retina and during postnatal development using receptor specific anti-peptide antisera. Of the three receptors examined, mGluR3 was not expressed in the retina. MGluR2 showed a distinct stratification pattern in the inner plexiform layer (IPL). Double-labelling immunocytochemistry revealed that mGluR2 was localized in the processes of cholinergic amacrine cells. MGluR4 was found throughout the entire IPL. At the subcellular level, both mGluR2 and mGluR4 were found to be localized exclusively in processes postsynaptic to bipolar cell synapses in the IPL. During postnatal development, labelling for mGluR2 was detected at around postnatal day five. MGluR4 was already present at postnatal day one, prior to the establishment of synaptic connections in the IPL. The differential expression patterns of individual metabotropic glutamate receptors in the adult and developing rat retina suggest distinct roles for these receptors in retinal synaptic circuitry.  相似文献   

8.
NADPH diaphorase histochemistry is commonly used to identify cells containing nitric oxide synthase (NOS), the enzyme catalyzing the production of nitric oxide from L-arginine. NADPH diaphorase activity and NOS immunostaining was demonstrated in different cells of the vertebrate retina; photoreceptors, horizontal cells, amacrine cells, ganglion cells, and Müller cells. However, the physiological role of nitric oxide (NO) in the retina has yet to be elucidated. In this study, we tested the assumption that NADPH diaphorase activity in the retinas of rabbits and rats depended on the state of visual adaptation. In the rabbit, light adaptation enhanced NADPH diaphorase activity in amacrine cells and practically eliminated it in horizontal cells. Dark adaptation induced the opposite effects; the NADPH diaphorase activity was reduced in amacrine cells and enhanced in horizontal cells. Retinas from eyes that were injected intravitreally with L-glutamate exhibited a pattern of NADPH diaphorase activity that was similar to that seen in dark-adapted retinas. In rats, the NADPH diaphorase activity of amacrine and horizontal cells exhibited adaptation dependency similar to that of the rabbit retina. But, the most pronounced effect of dark adaptation in the rat's retina was an enhancement of NADPH diaphorase activity in Müller cells, especially of the endfoot region. Assuming that NADPH diaphorase activity is a marker for NOS, these findings suggest that NO production in the mammalian retina is modulated by the level of ambient illumination and support the notion that NO plays a physiological role in the retina.  相似文献   

9.
Tachykinin (TK) peptides influence neuronal activity in the inner retina of mammals. The aim of this investigation was to determine the cellular localization of the neurokinin 1 receptor (NK1), whose preferred ligand is the TK peptide substance P (SP), in the rat retina. These studies used a polyclonal antiserum directed to the C-terminus of rat NK1. The majority of NK1-immunoreactive (IR) cells were located in the proximal inner nuclear layer (INL), and very rarely they were found in the distal INL. Some small and large NK1-IR somata were present in the ganglion cell layer. NK1-IR processes were densely distributed across the inner plexiform layer (IPL) with a maximum density over lamina 2 of the IPL. Immunoreactive processes also crossed the INL and ramified in the outer plexiform layer where they formed a sparse meshwork. NK1-IR processes were rarely observed in the optic nerve fiber layer. Double-label immunofluorescence studies with different histochemical markers for bipolar cells indicated that NK1 immunoreactivity was not present in bipolar cells. Together, these observations indicate that NK1 immunoreactivity is predominantly expressed by amacrine, displaced amacrine, interplexiform, and some ganglion cells. Double-label immunofluorescence experiments were also performed to characterize NK1-containing amacrine cells. Sixty-one percent of the gamma-aminobutyric acid (GABA)-IR cells, 71% of the large tyrosine hydroxylase (TH)-IR cells, and 100% of the small TH-IR cells contained NK1 immunoreactivity. In addition, most (91%) of the NK1-IR cells had GABA immunoreactivity. In contrast, vasoactive intestinal polypeptide-, TK-, choline acetyltransferase-, and parvalbumin-IR amacrine tells did not express NK1 immunoreactivity. Overall, the present findings suggest that SP acts directly upon several cell populations, including GABA-containing amacrine cells and ganglion cells, to influence visual information processing in the inner retina.  相似文献   

10.
The distribution of the carbohydrate epitope CD15, a putative cell adhesion molecule, was studied in adult vertebrate retinas by light-microscopic immunohistochemistry. Except for Old World primates, in which no immunoreactivity was detectable, all other species expressed the epitope on retinal interneurones. Subpopulations of stratified amacrine cells were found in all species with the exception of bats and marmoset monkeys, and bipolar cells were immunoreactive in frogs and all amniotic animals. Ganglion cells were labelled in urodelian, in all sauromorphian, as well as in some mammalian species. In some species, the distribution of immunoreactive neurones was correlated to areas of retinal specialization such as the visual streak in frogs and the dorsotemporal field in birds. In these parts of the retina with enhanced visual acuity, more CD15 glycosylated bipolar cells were found than in other parts. Among mammals, labelled bipolar cells were found exclusively in species with cone-dominated retinas. This comparative study shows that CD15 expression is consistently membrane associated in morphologically defined subsets of amacrine, bipolar, and ganglion cells throughout the vertebrate phylum. Its distribution pattern was found to depend more on the visual behavior of a given species (cone-dominated or rod-dominated retina) than on phylogenetic proximity between species.  相似文献   

11.
We have used light- and electron-microscopic immunohistochemistry to identify the presence of immunoreactivity to neuropeptide Y (NPY) within Müller cells in the retina of the cane toad, Bufo marinus. Müller cells containing NPY-like immunoreactivity (NPY-LI) were identified at the light-microscopic level by the coexistence with immunoreactivity to glial fibrillary acidic protein (GFAP) and at the ultrastructural level by their characteristic relationship to neuron cell bodies and processes. At the light-microscopic level, those cells which contained both NPY-LI and GFAP-LI usually had small cell bodies in the inner nuclear layer, while those cells which contained only NPY-LI were identified as large and small amacrine cells. The radially oriented primary processes in the inner plexiform layer and the vitreal end feet of GFAP-LI Müller cells also expressed NPY-LI. At the ultrastructural level, thin lamellar processes of Müller cells with NPY-LI enclosed some amacrine cell bodies in the inner nuclear layer and amacrine cell dendrites in the inner plexiform layer. These observations suggest that NPY-LI is localized in Müller cells in addition to two types of amacrine cells previously identified in the Bufo retina. This study provides the first evidence that glial elements in the vertebrate retina express NPY-LI.  相似文献   

12.
The expression of GABA in the human fetal (12-25 weeks of gestation), postnatal (five-month-old), and adult (35-year-old) retinas was investigated by immunohistochemistry. GABA expression was seen as early as 12 weeks in the undifferentiated cells of the inner neuroblast zone; a few optic nerve fiber layer axons were clearly labeled, suggesting that some of the stained cell bodies were prospective ganglion cells, others could be displaced amacrine cells. From 16-17 to 24-25 weeks, intense labeling was found in the amacrine, displaced amacrine, and some ganglion cells. During this time period, horizontal cells (identified by calbindin immunohistochemistry), undergoing migration (periphery) and differentiation (center), expressed GABA prominently. In the postnatal retina, some horizontal cells were moderately labeled, but very weakly in a few cells, in the adult. The Müller cells developed immunoreactivity first weakly at 12 weeks and then moderately from 16-17 weeks onward. The staining was also evident in the postnatal and adult retinas, showing labeled processes of these glial cells. Virtually no axons in the adult optic nerve and nerve fiber layer were stained; the staining was restricted to a few, large ganglion cells and displaced amacrine cells: Some amacrines were also labeled. The possibility that GABA might play a role in horizontal cell differentiation and maturation is highlighted. Other evidences suggest that GABA might play a role in metabolism during retinal development.  相似文献   

13.
The three largest known populations of amacrine cells in the rabbit retina were stained with fluorescent probes in whole mounts and counted at a series of retinal eccentricities. The retinas were counterstained using a fluorescent DNA-binding molecule and the total number of nuclei in the inner nuclear layer were counted in confocal sections. From the total number of inner nuclear layer cells and the known fraction of them occupied by amacrine cells, the fraction of amacrine cells made up by the stained populations could be calculated. Starburst cells made up 3%, indoleamine-accumulating cells made up 4%, and AII cells made up 11% of all amacrine cells. By referring four smaller populations of amacrine cells to the number of indoleamine-accumulating cells, they were estimated to make up 4% of all amacrine cells. Thus, 78% of all amacrine cells in the rabbit's retina are known only from isolated examples, if at all. This proportion is similar in the retinas of the mouse, cat, and monkey. It is likely that a substantial fraction of the local circuit neurons present in other regions of the central nervous system are also invisible as populations to current techniques.  相似文献   

14.
An OFF-center alpha and an OFF-center beta ganglion cell in cat retina, which had been recorded from and intracellularly stained with horseradish peroxidase (HRP) were examined by serial section electron microscopy. We counted synapses and identified presynaptic neurons to the HRP-stained cells in 20 microns radial slices through the centers of their dendritic trees. Presynaptic amacrine and bipolar cells were identified on cytological criteria known from previous studies. The OFF-beta cell with a 62 microns dendritic arbor, restricted to S1 and S2 (sublamina a) of the inner plexiform layer (IPL), received 38% bipolar and 62% amacrine cell synapses. The bipolar input was from both cb1 and cb2 cone bipolar types. Input from three distinct amacrine cell types occurred upon the dendrites, namely from: (1) AII amacrine lobular appendages, (2) large pale amacrine profiles (possibly A2 or A3 cells), and (3) small, dark amacrine types (possibly A8 cells). Large pale amacrine profiles (possibly A13) were found on the cell body and apical dendrite in sublamina b of the IPL. In addition, several amacrine profiles synapsed directly on the sides and base of the cell body in the ganglion cell layer. We estimate that the complete dendritic tree of this beta cell received about 1,000 synapses contributed by 12-14 bipolar cells, 7-10 AII amacrines and 28-41 other amacrine cells. The OFF-alpha cell had a dendritic tree size of 680 x 920 microns. A 250 microns length of two major dendrites stratifying narrowly in S2 of the IPL was reconstructed. Amacrine cells provided most of the synaptic input (80%). This input came from: (1) AII amacrine lobular appendages, (2) amacrines exhibiting large, pale synaptic profiles (possibly A2 or A3 cells), (3) pale amacrines with large mitochondria and a few neurotubules (unknown type), and (4) densely neurotubule-filled amacrine profiles (possibly A19 cells). A large pale amacrine cell type (possibly A13) provided synaptic input to the cell body as a serial synaptic intermediary with rod bipolar cells. Cone bipolar synapses were from only one type of cone bipolar, the cb2 type and formed 20% of the total synaptic input. We estimate that a minimum of 142 bipolar cells, 256 AII amacrine cells and 1,011 other amacrine cells, altogether providing 6,000-10,000 synapses, converged on the dendritic tree of this OFF-alpha cell.  相似文献   

15.
Double-label immunocytochemistry was carried out on cryostat sections of rat retina to test for the presence of calretinin in cholinergic starburst and the rod pathway-related glycinergic (All) amacrine cells. All cholinergic cells contained calretinin, but calretinin-immunoreactive cells were much more numerous in both the inner nuclear and ganglion cell layers than the cholinergic cells. Glycinergic All amacrine cells have been found to contain calretinin in cat, monkey and rabbit retinas. Since All amacrine cells in rat can be selectively labeled with antibodies against parvalbumin, in a second experiment we attempted to colocalize these proteins. We found that calretinin- and parvalbumin-immunoreactive neurons belonged to distinct amacrine cell populations permitting the conclusion that, in the rat retina, All amacrine cells do not contain calretinin. The results indicate that even those amacrine cells of the mammalian retina that are highly conserved with respect to morphology and transmitter content, may differ with respect to other neurochemical characteristics, such as their calcium-binding proteins.  相似文献   

16.
GABA immunoreactivity was examined in the retina of the New World monkey Cebus apella. Labeled cell bodies were identified as horizontal, bipolar, interplexiform, amacrine and a population of putative ganglion cells. To determine whether ganglion cells were immunoreactive to GABA, double-labeling experiments were performed using Fast Blue as retrograde neuronal tracer injected into the superior colliculus. Retinas containing FB-labeled ganglion cells were subsequently incubated with antiserum against GABA. Although retinocollicular ganglion cells were found in three different layers (ganglion cell layer, inner nuclear layer and inner plexiform layer), our experiments revealed GABA-positive ganglion cells only in the outer half of the ganglion cell layer.  相似文献   

17.
We have looked at the phenotypic expression of gamma-aminobutyric acid (GABA) and the two isoforms of its synthetic enzyme [glutamic acid decarboxylase (GAD)-65 and -67] in adult rat retinas that had the superior colliculus, pretectum and optic tract lesioned unilaterally at birth. It has been shown previously that this type of manipulation induces retrograde degeneration of retinal ganglion cells presumably without affecting other intraretinal neurons. We present evidence that GABAergic amacrine cells are affected by such manipulation. The number of cells immunoreactive for GABA, GAD-65 and GAD-67 decreased in the inner nuclear layer. In the retinal ganglion cell layer, however, the number of GABA- and GAD-65-labelled cells increased, while the number of GAD-67-labelled cells did not change. Biochemical assay showed that overall GAD activity was not altered in retinas of lesioned animals. Our results support the notion that, while neonatal lesion reorganizes the expression of GABA and GAD in the retina, enzyme activity is maintained within normal levels.  相似文献   

18.
We report a quantitative analysis of the major populations of cells present in the retina of the C57 mouse. Rod and cone photoreceptors were counted using differential interference contrast microscopy in retinal whole mounts. Horizontal, bipolar, amacrine, and Müller cells were identified in serial section electron micrographs assembled into serial montages. Ganglion cells and displaced amacrine cells were counted by subtracting the number of axons in the optic nerve, learned from electron microscopy, from the total neurons of the ganglion cell layer. The results provide a base of reference for future work on genetically altered animals and put into perspective certain recent studies. Comparable data are now available for the retinas of the rabbit and the monkey. With the exception of the monkey fovea, the inner nuclear layers of the three species contain populations of cells that are, overall, quite similar. This contradicts the previous belief that the retinas of lower mammals are "amacrine-dominated", and therefore more complex, than those of higher mammals.  相似文献   

19.
To understand the role of neurotrophins in the visual system, we investigated the distribution of both neurotrophins and their receptors within the retina of a fish that has the capacity to spontaneously regenerate its optic nerve axons after lesion. Intact retinas and retinas from tench, whose optic nerve had been crushed, were analyzed by immunohistochemistry and in situ hybridization. Trk receptors were mainly immunolocalized in cells of the inner nuclear and ganglion cell layers, a distribution coincident with that of their mRNAs. Nerve growth factor (NGF) immunoreactivity was detected exclusively in Müller cell processes, and brain-derived neurotrophic factor (BDNF) was found in both neuronal bodies and Müller cell processes. Neurotrophin-3 (NT-3) was detected in most of the cell nuclei, and neurotrophin-4/5 (NT-4/5) was localized in fibers and in a few cells in the inner retina. An increase in both TrkA protein and mRNA was detected during axonal regeneration within the retinal ganglion cell layer, reaching a maximum 30 days postcrush and returning to normal levels by day 90, when optic nerve regeneration is almost completed in this fish. None of the other neurotrophins and receptors showed appreciable changes. The heterogeneous distribution patterns of neurotrophins and their receptors in fish retina, their differences from the distribution observed in other species, and the TrkA changes after optic nerve crush suggest an important role for these molecules in the normal physiology of the fish retina and during the regeneration process.  相似文献   

20.
PURPOSE: Spastic mutant mice have abnormal gait and righting behavior, and the responses of their retinal ganglion cells have recently been shown to be abnormal. The former defects have been linked to a reduction of glycine-receptor density in the spinal cord of spastic mutants, but the cause of the retinal defects has not yet been determined. The authors thus tested for reduced glycine-receptor density in the mutant retina by comparing the levels of glycine receptors in the retinas of spastic mutant mice with those found in normal mice. METHODS: Indirect immunofluorescence histochemistry was employed, using monoclonal antibodies directed against the alpha- and beta-subunits of the receptor and against the 93-kd cytoplasmic receptor-associated protein, gephyrin. RESULTS: In normal mice, all glycine-receptor antibodies labeled two laminae of the inner plexiform layer (IPL): a broad band in the distal third of the IPL and a narrow band in the middle of the IPL. Lighter labeling was also seen in the outer plexiform layer with these antibodies. In spastic mutant mice, the glycine-receptor labeling of the IPL was reduced markedly. However, the overall structure of the spastic mutant retina was not disrupted because the distribution and intensity of both a presynaptic marker (synaptophysin) and a marker for the rod bipolar cell (protein kinase C) in the mutant retina were indistinguishable from those in normal retinas. CONCLUSIONS: The glycine-receptor distribution in normal mice was consistent with that previously reported for the rat and with the distribution of glycine responsiveness of dissociated rodent bipolar cells. The reduced levels of glycine receptors in spastic mice help explain the abnormal ganglion cell responses in the spastic mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号