首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Si3N4 with 20 vol% SiC whisker was fabricated without sintering aids by hot isostatic pressing. Density higher than 99.5% was attained after sintering at 2000°C and 170 MPa for 1 h. Careful mixing procedures and the use of an appropriate amount of a dispersant was found to be effective in avoiding whisker segregation and inhomogeneity. Mechanical properties of the composite were investigated by measurements of flexural strength, microhardness, frature toughness, and Young's modulus as a function of temperature. At room temerature, Vickers microhardness and Young's modulus increased from the matrix value about 20% and 5%, respectively. Toughness was about 30% higher, without reduction in flexural strength, up to 1400Deg;C.  相似文献   

2.
Composites containing 30 vol%β-Si3N4 whiskers in a Si3N4 matrix were fabricated by hot-pressing. The composites exhibited fracture toughness values between 7.6 and 8.6 MPa · m1/2, compared to 4.0 MPa · m1/2 for unreinforced polycrystalline Si3N4. The improvements in fracture toughness were attributed to crack wake effects, i.e., whisker bridging and pullout mechanisms.  相似文献   

3.
Developing the texture of ceramics is one of the effective ways for improving properties. Although the magnetic susceptibility of nonmagnetic materials is very small, there is a possibility to control the crystal orientation using a high magnetic field due to a magnetic anisotropy. In this study, Si3N4 ceramics were manufactured by a slip-casting process under high magnetic field and pressureless sintering. The texture of Si3N4 ceramics was studied using X-ray diffraction and scanning electron micrographs of polished and plasma-etched specimens. It has been found that most of the a,b -axes texture of β-Si3N4 grains aligned to the magnetic field direction.  相似文献   

4.
The room-temperature mechanical properties of a SiC-fiberreinforced reaction-bonded silicon nitride composite were measured after 100 h treatment in nitrogen and oxygen environments to 1400°C. The composite heat-treated in nitrogen to 1400°C showed no appreciable loss in properties. In contrast, composites heat-treated in oxygen from 600° to 1000°C retained ∼65% and 35% of the matrix fracture and ultimate strength, respectively, of the as-fabricated composites, and those heat-treated from 1200° to 1400°C retained greater than 90% and 65% of the matrix fracture and ultimate strength, respectively, of the as-fabricated composites. For all nitrogen and oxygen treatments, the composite displayed strain capability beyond the matrix fracture strength. Oxidation of the fiber surface coating, which caused degradation of bond between the fiber and matrix and reduction in fiber strength, appears to be the dominant mechanism for property degradation of the composites oxidized from 600° to 1000°C. Formation of a protective silica coating at external surfaces of the composites at and above 1200°C reduced oxidation of the fiber coating and hence degrading effects of oxidation on their properties.  相似文献   

5.
The oxidation behavior and its effect on the mechanical properties of fibrous monolith Si3N4/BN after exposure to air at temperatures ranging from 1000° to 1400°C for up to 20 h were investigated. After exposure at 1000°C, only the BN cell boundary was oxidized, forming a B2O3 liquid phase. With increasing exposure temperature, the Si3N4 cells began to oxidize, forming crystalline Y2Si2O7, SiO2, and silicate glass. However, in this case, a weight loss was observed due to extensive vaporization of the B2O3 liquid. After exposure at 1400°C, large Y2Si2O7 crystals with a glassy phase formed near the BN cell boundaries. The oxidation behavior significantly affected the mechanical properties of the fibrous monolith. The flexural strength and work-of-fracture decreased with increasing exposure temperature, while the noncatastrophic failure was maintained.  相似文献   

6.
The microstructural evolution and mechanical properties of Si3N4–SiC composites obtained by the sinter–post-HIP process were investigated. SiC addition prohibited β-Si3N4 grain growth; however, the grain growth followed the empirical growth law, with exponents of 3 and 5 for the c - and the a -axis directions, respectively. Mechanical properties were strongly influenced by SiC addition and sintering conditions. Short-crack propagation behavior was measured and analyzed by the indentation-strength in-bending (ISB) method. The present composites had high short-crack toughness, compared with the values for monolithic Si3N4. The enhanced short-crack toughness was attributed to crack-tip bridging by the SiC particles.  相似文献   

7.
The friction and wear properties of silicon nitride/carbon fiber composites have been assessed and compared with monolithic Si3N4. Three different types of composites have been produced; one in which both the Si3N4 grains and the carbon fibers were aligned, one in which only the fibers had alignment, and a third where both the grains and fibers had random orientation. The friction coefficients of all of the composites, following running in, were around 0.2–0.3, typically less than one-third of that of the monolithic material. However there was no significant difference in friction coefficient between the three different types of composite. The specific wear rates of all the materials decreased with sliding distance and those of the composites were lower than the monolithic material. Among the composites, the wear rate of the one with aligned fibers in a randomly oriented Si3N4 matrix showed no dependence on sliding direction relative to the fiber alignment, and the specific wear rates of these samples were similar to that of the randomly oriented fiber composite, indicating little effect of fiber alignment alone on the wear properties under the present testing conditions. However, the specific wear rate of the composite with both fiber and grain alignment showed directional dependence. Grain cracking was observed perpendicular to the sliding direction, and the Spara specimen, in which the sliding direction was parallel to the Si3N4 grain alignment, showed higher wear rates than the Sperp and N samples of this composite. Such cracks are perpendicular to the major axis of the grains in the Spara sample and are thought to lead to easier removal of grains following their cracking under the tensile stresses induced particularly during the running in period.  相似文献   

8.
The mechanical and thermal properties of Si2N2O/SiC-whisker composites were studied with emphasis on the effect of matrix composition and of whisker content. The fracture toughness of Si2N2O was remarkably improved by 90% with a concomitant 70% strength improvement by addition of SiC whiskers of only 10 vol%. Optimum mechanical and thermal properties of Si2N2O/SiC-whisker composites were obtained at an equimolar ratio of Si3N4/SiO2, which is the stoichiometric composition for Si2N2O. Additional investigation concerning the Si2N2O-matrix/SiC-whisker interface by controlling sintering additives is necessary for further improvement of mechanical and thermal properties of Si2N2O/SiC-whisker composites.  相似文献   

9.
Composite ceramic materials based on Si3N4 and ZrO2 stabilized by 3 mol% Y2O3 have been formed using aluminum isopropoxide as a precursor for the Al2O3 sintering aid. Densification was carred out by hot-pressing at temperatures in the range 1650° to 1800°C, and the resulting micro-structures were related to mechanical properties as well as to oxidation behavior at 1200°C. Densification at the higher temperatures resulted in a fibrous morphology of the Si3N4 matrix with consequent high room-temperature toughness and strength. Decomposition of the ZrO2 grains below the oxidized surface during oxidation introduced radial stresses in the subscalar region, and from the oxidation experiments it is suggested that the ZrO2 incorporated some N during densification.  相似文献   

10.
The tribological behavior of monolithic Si3N4 and a Si3N4/carbon fiber composite has been assessed under high load and low speeds in an aqueous environment. The results showed that the friction coefficient of the Si3N4 was not significantly reduced when compared with dry sliding, and this was attributed to the failure to maintain a lubricating layer between the solid–solid surfaces. In the case of the composite, the initial high friction coefficient was reduced shortly after the beginning of the wear test and maintained a low value (about 0.03) throughout. This was attributed to the solid lubricating effect of the composite resulting in lower stress at the contact asperities, preventing the removal of the lubricating layer.  相似文献   

11.
A study of the elastic moduli of Al2O3 and Si3N4 ceramics reinforced with 0 to 25 wt% SiC whiskers has been performed. The Young's moduli, shear moduli, and longitudinal modulus are compared with calculated predictions for aligned fiber composites by Hill and Hashin and Rosen, and for fibers randomly oriented in three dimensions by Christensen and Waal. The measured values are in excellent quantitative agreement with those derived for the random orientation of the SiC whiskers.  相似文献   

12.
TiN-coated Si3N4 particles were prepared by depositing TiO2 on the Si3N4 surfaces from Ti(O- i -C3H7)4 solution, the TiO2 being formed by controlled hydrolysis, then subsequently nitrided with NH3 gas. A homogeneous TiO2 coating was achieved by heating a Si3N4 suspension containing 1.0 vol% H2O with the precursor at 40°C. Nitridation successfully produced Si3N4 particles coated with 10–20 nm TiN particles. Spark plasma sintering of these TiN/Si3N4 particles at 1600°C yielded composite ceramics with a relative density of 96% at 25 vol% TiN and an electrical resistivity of 10−3Ω·cm in compositions of 17.5 and 25 vol% TiN/Si3N4, making these ceramics suitable for electric discharge machining.  相似文献   

13.
This paper deals with the densification and phase transformation during pressureless sintering of Si3N4 with LiYO2 as the sintering additive. The dilatometric shrinkage data show that the first Li2O- rich liquid forms as low as 1250°C, resulting in a significant reduction of sintering temperature. On sintering at 1500°C the bulk density increases to more than 90% of the theoretical density with only minor phase transformation from α-Si3N4 to β-Si3N4 taking place. At 1600°C the secondary phase has been completely converted into a glassy phase and total conversion of α-Si3N4 to β-Si3N4 takes place. The grain growth is anisotropic, leading to a microstructure which has potential for enhanced fracture toughness. Li2O evaporates during sintering. Thus, the liquid phase is transient and the final material might have promising mechanical properties as well as promising high-temperature properties despite the low sintering temperature. The results show that the Li2O−Y2O3 system can provide very effective low-temperature sintering additives for silicon nitride.  相似文献   

14.
An indentation method for measuring shar strength in brittle matrix composites was applied to SiC-fiber/Si3N4-matrix samples. Three methods were used to manufacture the composites: reaction bonding of a Si/SiC preform, hot-pressing, and nitrogen-overpressure sintering. An indentation technique developed by Marshall for thin specimens was used to measure the shear strength of the interface and the interfacial friction stresses. This was done by inverting the sample after the initial push through and retesting the pushed fibers. SEM observations showed that the shear strength was determined by the degree of reaction between the fiber and the matrix unless the fiber was pushed out of its (well-bonded) sheath.  相似文献   

15.
Si3N4 composite materials containing up to 20 vol% SiC whiskers were slip cast and pressureless sintered at 1820°C and 0.13 MPa of N2. Viscosimetry showed no influence of whisker loading on the rheology of the highly concentrated aqueous slips up to 15 vol% whiskers. During casting the whiskers were preferentially aligned parallel to the mold surfaces. Depending on the whisker loading, green densities of 0.64 to 0.69 fractional density could be achieved. Strong anisotropic shrinkage occurred during sintering with a maximum linear shrinkage of 21% perpendicular but only 7% parallel to the whisker plane. With increasing whisker content from 0 to 20 vol% sintered densities decreased from 0.98 to 0.88, respectively.  相似文献   

16.
A microstructural evaluation of Si3N4 with 20 vol% SiC whiskers, fully densified by hot isostatic pressing (HIP) without sintering aids, is presented. The grain size and morphology of the matrix, the whisker aspect ratio after sintering, interfacial bonding, and the structural stability of reinforcement up to 2000°C are discussed. Image analysis provides quantitative information about whisker dispersion and orientation. It is pointed out that a whisker dispersion and orientation. It is pointed out that a whisker composite with a high degree of homogeneity and isotropy can be obtained by optimizing the mixing procedure and using HIP.  相似文献   

17.
R -curve behavior of Si3N4–BN composites and monolithic Si3N4 for comparison was investigated. Si3N4–BN composites showed a slowly rising R -curve behavior in contrast with a steep R -curve of monolithic Si3N4. BN platelets in the composites seem to decrease the crack bridging effects of rod-shaped Si3N4 grains for small cracks, but enhanced the toughness for long cracks as they increased the crack bridging scale. Therefore, fracture toughness of the composites was relatively low for the small cracks, but it increased significantly to ∼8 MPa·m1/2 when the crack grew longer than 700 μm, becoming even higher than that of the monolithic Si3N4.  相似文献   

18.
Composite densification was studied by performing slip casting and sintering experiments on an Al2O3 matrix and Si3N4 whisker system. Even though all the slip-cast powder compacts exhibited high green densities (up to 70% of the theoretical) and narrow pore-size distribution (pore radius around 15 to 30 nm), significant differential densification on a microscopic scale was found due to the existence of local whisker agglomeration. The inhomogeneous whisker distribution resulted in a binary mixture of large and small pores in the sintered composites, in which whisker-associated flaws remained stable even after prolonged sintering. The sintered microstructures showed that the spatial distribution as well as the volume fraction of the Si3N4 affect composite densification. Inhomogeneous whisker distribution dominated the complete densification of the composites.  相似文献   

19.
Fused deposition of ceramics (FDC) is a technique in which green parts are fabricated directly from CAD designs. The feedstock for FDC is a 1.778 mm diameter filament that requires a low viscosity and high column strength. This study explores the powder processing science, as well as the rheological and mechanical properties required for a successful FDC feedstock material. GS44 Si3N4 powders were dispersed in RU9 binder using oleyl alcohol (OA). The viscosity of the RU9/OA/Si3N4 mixture was measured as a function of temperature, solids loading, and OA concentration. The mechanical properties of the filament feedstock were evaluated in compression to establish FDC process limits. The feedstock material shows a shear thinning behavior with OA acting mainly as a plasticizer. The viscosity of GS44-filled RU9 decreases with temperature, and increases with solids content. At 185°C and 55 vol% loading, the viscosity was found to be in the range of 49–7 Pa·s for a corresponding shear rate of 70–1128 s1. This was sufficiently low for FDC. Based on pressure requirements for FDC extrusion (Δ P ), and maximum sustainable stress without buckling by the filament (σE), it has been found that for successful FDC of RU955, 1.1Δ P < σE.  相似文献   

20.
The fracture behavior at high temperature of a Si3N4-based SiC-whisker composite fabricated by hot isostatic pressing without sintering aids is compared with that of other highly refractory materials. Particular attention is directed toward evaluating the slow-crack-growth resistance of the composite up to 1440°C and relating this resistance to the microfracture behavior of Si3N4 grains, SiC whiskers, and the intergranular, glassy SiO2 phase. Only thick whiskers operate to bridge the wake of the crack; these whiskers may make a positive contribution to the slow-crack-growth resistance. Impurities detected by EDX microanalysis at the grain boundary, however, apparently degrade the high-temperature properties, a finding supported by internal-friction measurements. Nevertheless, the high potential of the system without sintering aids for high-temperature structural applications has been demonstrated by the time to failure estimated from the measured slow-crack-growth resistance for a fixed flaw size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号