首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The atomic and electronic structures of an Au-intercalated graphene monolayer on the SiC(0001) surface were investigated using first-principles calculations. The unique Dirac cone of graphene near the K?point reappeared as the monolayer was intercalated by Au atoms. Coherent interfaces were used to study the mismatch and the strain at the boundaries. Our calculations showed that the strain at the graphene/Au and Au/SiC(0001) interfaces also played a key role in the electronic structures. Furthermore, we found that at an Au coverage of 3/8?ML, Au intercalation leads to a strong n-type doping of graphene. At 9/8?ML, it exhibited a weak p-type doping, indicative that graphene was not fully decoupled from the substrate. The shift in the Dirac point resulting from the electronic doping was not only due to the different electronegativities but also due to the strain at the interfaces. Our calculated positions of the Dirac points are consistent with those observed in the ARPES experiment (Gierz et al 2010 Phys. Rev. B 81 235408).  相似文献   

3.
We demonstrate injection, transport, and detection of spins in spin valve arrays patterned in both copper based chemical vapor deposition (Cu-CVD) synthesized wafer scale single layer and bilayer graphene. We observe spin relaxation times comparable to those reported for exfoliated graphene samples demonstrating that chemical vapor deposition specific structural differences such as nanoripples do not limit spin transport in the present samples. Our observations make Cu-CVD graphene a promising material of choice for large scale spintronic applications.  相似文献   

4.
5.
Abstract

The dependence of surface morphology of the SiC(0001) substrate on the rate with which it is heated up to the temperature of graphene growth was studied by three techniques: atomic force microscopy, Raman spectroscopy and Kelvin probe force microscopy. The study was carried out for the rates of substrates heating ranging from 100?°C/min to 320?°C/min. As a result, it was found out that both the width of the terraces forming on the surface of SiC substrate and the uniformity of the graphene layers covering these terraces significantly depend on the applied rate of the heating. It was also shown that the most homogeneous monolayer graphene with the minimum of double-layers inclusions is formed if the rate of SiC heating is about 250?°C/min.  相似文献   

6.
The growth and structure of Si- and Ge-nanocrystals was investigated using high resolution X-ray diffraction (HRXRD) and atomic force microscopy (AFM). AFM-images were used to determine the lateral and vertical dimensions of the nanocrystal. HRXRD measurements show clearly that Si- and Ge-nanocrystals grow on 6H–SiC(0001) preferentially in two different orientations — 111 and 110 — with respect to the surface normal. The growth of Ge-nanocrystals on Si-rich 6H–SiC(0001) surfaces leads to the formation of Si/Ge-alloy nanocrystals. Both types of nanocrystals grow coherently with respect to the substrate. Hence, due to the respective lattice mismatch, the degree of coherence was found to be much better for Si-nanocrystals.  相似文献   

7.
Surface functionalization of epitaxial graphene overlayers on 6H-SiC(0001) has been attempted through thermal reactions in NH3. X-ray photoelectron spectroscopy and micro-region low energy electron diffraction results show that a significant amount of N is present at the NH3-treated graphene surface, which results in strong band bending at the SiC surface as well as decoupling of the graphene overlayers from the substrate. The majority of the surface N species can be removed by annealing in vacuum up to 850 °C, weakening the surface band bending and resuming the strong coupling of graphene with the SiC surface. The desorbed N atoms can be attributed to the intercalated species between graphene and SiC. Low temperature scanning tunneling spectroscopy and density functional theory simulations confirm the presence of N dopants in the graphene lattice, which are in the form of graphitic substitution and can be stable above 850 °C. This is the first report of simultaneous N intercalation and N doping of epitaxial graphene overlayers on SiC, and it may be employed to alter the surface physical and chemical properties of epitaxial graphene overlayers.   相似文献   

8.

We present the results of investigations of the transport properties of graphene films obtained by thermodestruction of a 4H-SiC (0001) surface in argon. The charge-carrier concentration in the graphene layer was within 7 × 1011–1 × 1012 cm–2, and the maximum mobility of electrons approached 6000 cm2/(V · s). The achieved parameters of mobility are close to theoretical values calculated for graphene films with intrinsic conductivity on the Si face of SiC at Т = 300 К in the absence of intercalated hydrogen.

  相似文献   

9.
We demonstrate the first successful growth of large-area (200 × 200 μm(2)) bilayer, Bernal stacked, epitaxial graphene (EG) on atomically flat, 4H-SiC (0001) step-free mesas (SFMs) . The use of SFMs for the growth of graphene resulted in the complete elimination of surface step-bunching typically found after EG growth on conventional nominally on-axis SiC (0001) substrates. As a result heights of EG surface features are reduced by at least a factor of 50 from the heights found on conventional substrates. Evaluation of the EG across the SFM using the Raman 2D mode indicates Bernal stacking with low and uniform compressive lattice strain of only 0.05%. The uniformity of this strain is significantly improved, which is about 13-fold decrease of strain found for EG grown on conventional nominally on-axis substrates. The magnitude of the strain approaches values for stress-free exfoliated graphene flakes. Hall transport measurements on large area bilayer samples taken as a function of temperature from 4.3 to 300 K revealed an n-type carrier mobility that increased from 1170 to 1730 cm(2) V(-1) s(-1), and a corresponding sheet carrier density that decreased from 5.0 × 10(12) cm(-2) to 3.26 × 10(12) cm(-2). The transport is believed to occur predominantly through the top EG layer with the bottom layer screening the top layer from the substrate. These results demonstrate that EG synthesized on large area, perfectly flat on-axis mesa surfaces can be used to produce Bernal-stacked bilayer EG having excellent uniformity and reduced strain and provides the perfect opportunity for significant advancement of epitaxial graphene electronics technology.  相似文献   

10.
Multilayer epitaxial graphene was obtained from a 6H-SiC(001) substrate subjected to a temperature gradient from 1250 to 1450?°C. Scanning tunneling microscopy and x-ray diffraction were used to identify the structure and morphology of the surface, from which the formation of a metastable phase was inferred. By a comparison between microscopy and diffraction data, we report the appearance of misoriented Si-doped graphene in cold regions (1250?°C) of the substrate. This metastable phase occurs in domains where silicon sublimation is incomplete and it coexists with small domains of epitaxial graphene. At 1350?°C this phase disappears and one observes complete graphene-like layers (although misoriented), where rotational registry between the underlying epitaxial graphene and additional layers is absent. At 1450?°C the stacking among layers is established and the formation of highly oriented single crystalline graphite is complete. The stability of this Si-rich metastable phase at 1250?°C was confirmed by first-principles calculations based on the density functional theory.  相似文献   

11.
The properties of a SiC(0001)-H-C(graphene) system have been studied by considering a cluster comprising two C atoms of graphene, three Si atoms of the SiC substrate, and two or three channeled H atoms. Calculations of the electron structure and bond energies are performed using the Harrison bonding orbital method. The influence of channeled H atoms on the system energy are analyzed using two schemes. It is shown that the scheme (AB) involving two H atoms is energetically unfavorable, while the scheme (AC) with three H atoms provides a gain in the energy.  相似文献   

12.
Organic semiconductors that are pi-conjugated are emerging as an important platform for 'spintronics', which purports to harness the spin degree of freedom of a charge carrier to store, process and/or communicate information. Here, we report the study of an organic nanowire spin valve device, 50 nm in diameter, consisting of a trilayer of ferromagnetic cobalt, an organic, Alq3, and ferromagnetic nickel. The measured spin relaxation time in the organic is found to be exceptionally long-between a few milliseconds and a second-and it is relatively temperature independent up to 100 K. Our experimental observations strongly suggest that the primary spin relaxation mechanism in the organic is the Elliott-Yafet mode, in which the spin relaxes whenever a carrier scatters and its velocity changes.  相似文献   

13.
The molecular beam epitaxial growth of Si on SiC(0001), exhibiting a Stranski–Krastanov mode, was investigated by reflection high-energy electron diffraction. Several surface superstructures were observed in the initial stage of growth. After exceeding a critical coverage, Si island formation sets in. Under near-equilibrium conditions, the critical coverage was 1.4 monolayers and corresponds to the occurrence of a 3×3 superstructure remaining as a wetting layer after the island formation. Island formation at high deposition rates (R) and low temperatures (T) is kinetically delayed, which can be described as function of R and the diffusivity D by a relationship . Si islands, which were relatively uniform size of several nm with a density of 1011 cm−2, were obtained under these conditions. At lower R values the critical thickness is only a function of T, indicating that the incorporation time of adatoms is the relevant time scale for surface diffusion. Ordered arrays of small dots were also grown on vicinal surfaces at higher T and lower R values, which can be attributed to a lower diffusivity at step edges, acting as perfect sinks for the Si adatoms. Furthermore, two different kinds of islands were found with a (111)/(0001) and (110)/(0001) epitaxial relationship.  相似文献   

14.
Lee K  Kim S  Points MS  Beechem TE  Ohta T  Tutuc E 《Nano letters》2011,11(9):3624-3628
We investigate the magnetotransport properties of quasi-free-standing epitaxial graphene bilayer on SiC, grown by atmospheric pressure graphitization in Ar, followed by H(2) intercalation. At the charge neutrality point, the longitudinal resistance shows an insulating behavior, which follows a temperature dependence consistent with variable range hopping transport in a gapped state. In a perpendicular magnetic field, we observe quantum Hall states (QHSs) both at filling factors (ν) multiples of four (ν = 4, 8, 12), as well as broken valley symmetry QHSs at ν = 0 and ν = 6. These results unambiguously show that the quasi-free-standing graphene bilayer grown on the Si-face of SiC exhibits Bernal stacking.  相似文献   

15.
A decrease in the density of threading dislocations has been observed during the epitaxial growth of GaN layers on porous silicon carbide (PSC) substrates by means of chloride hydride vapor phase epitaxy. It is established that, in the early growth stage, the substrate is capable of redistributing stresses in the growing heterostructure, which leads to relaxation of the lattice misfit stresses via generation of a superlattice of planar defects. In the subsequent growth stage, these defects prevent the propagation of threading dislocations. Owing to this phenomenon, 1-μm-thick GaN layers on PSC can be obtained with a density of dislocations reduced by two orders of magnitude as compared to epilayers of the same thickness grown on nonporous substrates.  相似文献   

16.
Ultra-thin gallium nitride (GaN) films were deposited using the ion-beam assisted molecular-beam epitaxy technique. The influence of the nitrogen ion to gallium atom flux ratio (I/A ratio) during the early stages of GaN nucleation and thin film growth directly, without a buffer layer on super-polished 6H-SiC(0001) substrates was studied. The deposition process was performed at a constant substrate temperature of 700 °C by evaporation of Ga and irradiation with hyperthermal nitrogen ions from a constricted glow-discharge ion source. The hyperthermal nitrogen ion flux was kept constant and the kinetic energy of the ions did not exceed 25 eV. The selection of different I/A ratios in the range from 0.8 to 3.2 was done by varying the Ga deposition rate between 5 × 1013 and 2 × 1014 at. cm− 2 s− 1. The crystalline surface structure during the GaN growth was monitored in situ by reflection high-energy electron diffraction. The surface topography of the films as well as the morphology of separated GaN islands on the substrate surface was examined after film growth using a scanning tunneling microscope without interruption of ultra-high vacuum. The results show, that the I/A ratio has a major impact on the properties of the resulting ultra-thin GaN films. The growth mode, the surface roughness, the degree of GaN coverage of the substrate and the polytype mixture depend notably on the I/A ratio.  相似文献   

17.
Su CY  Lu AY  Wu CY  Li YT  Liu KK  Zhang W  Lin SY  Juang ZY  Zhong YL  Chen FR  Li LJ 《Nano letters》2011,11(9):3612-3616
Direct formation of high-quality and wafer scale graphene thin layers on insulating gate dielectrics such as SiO(2) is emergent for graphene electronics using Si-wafer compatible fabrication. Here, we report that in a chemical vapor deposition process the carbon species dissociated on Cu surfaces not only result in graphene layers on top of the catalytic Cu thin films but also diffuse through Cu grain boundaries to the interface between Cu and underlying dielectrics. Optimization of the process parameters leads to a continuous and large-area graphene thin layers directly formed on top of the dielectrics. The bottom-gated transistor characteristics for the graphene films have shown quite comparable carrier mobility compared to the top-layer graphene. The proposed method allows us to achieve wafer-sized graphene on versatile insulating substrates without the need of graphene transfer.  相似文献   

18.
Journal of Materials Science - The epitaxial graphene layer (EG) grown on silicon carbide (SiC) is severely affected by the presence of the underlying graphene buffer layer (BL). However, little...  相似文献   

19.
Photoluminescence of (0001) epitaxial ZnO films with thicknesses of 10, 30 and 100 nm on C-sapphire substrates have been studied at room temperature and after exposure to Ar, Ar–O2, Ar–N2 and Ar–H by remote microwave and radiofrequency plasmas. The photoluminescence are not modified by remote plasma treatments where only neutral species were involved. On the contrary, the photoluminescence signal is enhanced or quenched after radiofrequency plasma treatments when energetic ion species are involved in the surface treatment processes. Little changes of electric properties are observed, however, the optical transmission indicates that the absorption edge and probably also the index of refraction are affected. Photoluminescence peak shifts, widths and intensities changes show very strong similarities with polarized emission of ZnO single crystal where it exists a strong dichroism. The photoluminescence emission properties may then result from this optical modification. However, the plasma treatments on the different samples show very low stability in time, except, for the treatment in argon plasma alone. In this later case, in-situ monitoring of photoluminescence as a function of temperature revealed a partial recovery of the photoluminescence properties after a heat treatment at 400 °C for few minutes. These results indicate that photoluminescence of (0001) ZnO thin film, related to σ-emission polarized emission from c-axis polar surfaces, is highly affected by surface and implanted charged species.  相似文献   

20.
The effect of laser irradiation on the photoluminescence of (SiC)0.95(A1N)0.05 epitaxial films was studied. Irradiation was found to dislodge Al and N atoms from their substitutional sites, producing radiative donor-acceptor pairs Alsi-Nc. The average pair separation decreases with increasing irradiation time, as evidenced by the shift of the corresponding emission to higher energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号