首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intrathecal administration of delta 9-tetrahydrocannabinol (delta 9-THC) but not the cannabinoid agonist CP55,940 enhances the antinociception produced by morphine. In addition, CP55,940- and delta 9-THC-induced antinociception is blocked by the kappa opioid antagonist norbinaltorphimine, and both cannabinoids are cross-tolerant to kappa agonists but do not act directly at the kappa receptor. Previous work in our laboratory has implicated dynorphins in the antinociceptive effects of delta 9-THC and its enhancement of morphine-induced antinociception. The goal of the present study was to evaluate the role of dynorphins in the antinociceptive effects of CP55,940 at the spinal level. Pretreatment of mice with antisera to dynorphin A(1-17), dynorphin A(1-8) or alpha-neoendorphin, all of which have been shown to retain specificity for blockade of their respective peptide in vivo, blocked the antinociceptive effects of delta 9-THC but not CP55,940. Dynorphin B produced antinociceptive effects on intrathecal administration to mice. Like CP55,940, dynorphin B failed to enhance the antinociceptive effects of morphine, whereas dynorphin A(1-17) and alpha-neoendorphin enhanced the antinociceptive effects of morphine. Using spinal catheterization of the rat, CP55,940 administration was shown to produce a significant release of dynorphin B concurrent with the production of antinociception. Our data suggest that CP55,940 induces a release of spinal dynorphin B that contributes at least in part to its antinociceptive effects in the spinal cord.  相似文献   

2.
The antinociceptive effects of the combination of spinal morphine and gabapentin were evaluated in the tail-flick test in rats. The intrathecal coadministration of a subantinociceptive dose of morphine at 0.2 microgram and gabapentin at 300 micrograms produced significant antinociception. Pretreatment with spinal gabapentin at 300 micrograms shifted the dose-response curve of spinal morphine to the left with a decrease in morphine ED50 value from 1.06 micrograms to 0.34 microgram. The antinociceptive effects produced by the combination of a subantinociceptive dose of morphine and gabapentin were reversed by spinal naloxone at 30 micrograms but were not reversed by spinal bicuculline at 0.3 microgram. Furthermore, the concurrent administration of spinal naloxone at 30 micrograms with the combination of morphine and gabapentin blocked antinociception, while the concurrent administration of spinal bicuculline at 0.3 microgram failed to prevent antinociception. These results indicate that the combination of spinal gabapentin and morphine produces an enhancement of antinociception that appears to involve the spinal mu opioid receptors. Furthermore, repeated administration of gabapentin for 3 days did not affect the enhancing effect of gabapentin on the antinociceptive effect of morphine, indicating that tolerance did not develop to gabapentin's ability to enhance morphine antinociception.  相似文献   

3.
Intrathecal pretreatment of mice with an antisense oligodeoxynucleotide directed against the kappa-1 receptor significantly reduced the antinociceptive effects of the kappa receptor agonist U50,488 as well as delta 9-THC, the major psychoactive ingredient found in cannabis. A mismatched oligodeoxynucleotide which contained four switched bases did not block the antinociception produced by U50,488 or delta 9-THC. Furthermore, kappa-1 antisense did not alter the antinociceptive effects of either the mu receptor-selective opioid DAMGO, or the delta receptor-selective opioid DPDPE. By using kappa-1 antisense, we were able to demonstrate that an interaction occurs between the cannabinoids and opioids in the spinal cord.  相似文献   

4.
1. The antinociceptive action of clonidine (Clon) and the interactions with alpha 1, alpha 2 adrenoceptor and opioid receptor antagonists was evaluated in mice by use of chemical algesiometric test (acetic acid writhing test). 2. Clon produced a dose-dependent antinociceptive action and the ED50 for intracerebroventricular (i.c.v.) was lower than for intraperitoneal (i.p.) administration (1 ng kg-1 vs 300 ng kg-1). The parallelism of the dose-response curves indicates activation of a common receptor subtype. 3. Systemic administration of prazosin and terazosin displayed antinociceptive activity. Pretreatment with prazosin produced a dual action: i.c.v. Clon effect did not change, and i.p. Clon effect was enhanced. Yohimbine i.c.v. or i.p. did not induce antinonciception, but antagonized Clon-induced activity. These results suggest that alpha 1- and alpha 2-adrenoceptors, either located at the pre- and/or post-synaptic level, are involved in the control of spinal antinociception. 4. Naloxone (NX) and naltrexone (NTX) induced antinociceptive effects at low doses (microgram kg-1 range) and a lower antinociceptive effect at higher doses (mg kg-1 range). Low doses of NX or NTX antagonized Clon antinociception, possibly in relation to a preferential mu opioid receptor antagonism. In contrast, high doses of NX or NTX increased the antinociceptive activity of Clon, which could be due to an enhanced inhibition of the release of substance P. 5. The results obtained in the present work suggest the involvement of alpha 1-, alpha 2-adrenoceptor and opioid receptors in the modulation of the antinociceptive activity of clonidine, which seems to be exerted either at spinal and/or supraspinal level.  相似文献   

5.
The antinociceptive effects of morphine (5 micrograms) microinjected into the ventrolateral periaqueductal gray were determined using both the tail flick and the foot withdrawal responses to noxious radiant heating in lightly anesthetized rats. Intrathecal injection of appropriate antagonists was used to determine whether the antinociceptive effects of morphine were mediated by alpha 2-noradrenergic, serotonergic, opioid, or cholinergic muscarinic receptors. The increase in the foot withdrawal response latency produced by microinjection of morphine in the ventrolateral periaqueductal gray was reversed by intrathecal injection of the cholinergic muscarinic receptor antagonist atropine, but was not affected by the alpha 2-adrenoceptor antagonist yohimbine, the serotonergic receptor antagonist methysergide, or the opioid receptor antagonist naloxone. In contrast, the increase in the tail flick response latency produced by morphine was reduced by either yohimbine, methysergide or atropine. These results indicate that microinjection of morphine in the ventrolateral periaqueductal gray inhibits nociceptive responses to noxious heating of the tail by activating descending neuronal systems that are different from those that inhibits the nociceptive responses to noxious heating of the feet. More specifically, serotonergic, muscarinic cholinergic and alpha 2-noradrenergic receptors appear to mediate the antinociception produced by morphine using the tail flick test. In contrast, muscarinic cholinergic, but not monoamine receptors appear to mediate the antinociceptive effects of morphine using the foot withdrawal response.  相似文献   

6.
Delta9-tetrahydrocannabinol (delta9-THC) elicits antinociception in rodents through the central CB1 cannabinoid receptor subtype. In addition. Delta9-THC stimulates the release of dynorphin-related peptides leading to kappa-opioid spinal antinociception. In this work we describe the effect of a mixture of thiorphan (a neutral endopeptidase EC3.4.24.11 inhibitor) and bestatin (an aminopeptidase inhibitor), administered i.c.v., on the antinociceptive effect of peripherally administered delta9-THC in mice. As in the case of morphine or DAMGO ([D-Ala2.N-Me-Phe4,Gly-ol]enkephalin), a mu-selective opioid receptor agonist, the mixture of enkephalin-degrading enzyme inhibitors also enhanced the antinociceptive effect of delta9-THC. This effect was blocked by the CB1 cannabinoid receptor antagonist, SR-141,716-A, as well as by naloxone. The kappa-opioid receptor antagonist nor-binaltorphimine, administered i.t., also antagonized the effect of this combination. Similar results were obtained with the mu-opioid receptor antagonist beta-funaltrexamine after i.c.v. administration. These results demonstrate the involvement of both mu-opioid supraspinal and kappa-opioid spinal receptors in the interaction of both opioid and cannabinoid systems regulating nociception in mice.  相似文献   

7.
This study examined the contribution of spinal delta1 and delta2 opioid receptors to the antinociception produced by microinjection of L-glutamate in either the nucleus raphe magnus (NRM) or the nucleus reticularis gigantocellularis pars alpha (NGCp alpha) of the rat. Intrathecal (i.t.) pretreatment with 1 microg of 7-benzylidinenaltrexone (BNTX), a delta1 opioid receptor antagonist, did not antagonize the increase in tail flick latency (TFL) produced by microinjection of L-glutamate in either the NRM or the NGCp alpha. In contrast, i.t. pretreatment with 3 microg of naltriben (NTB), a delta2 opioid receptor antagonist, completely antagonized the increase in TFL evoked by microinjection of L-glutamate in the NRM, but did not antagonize the increase in TFL evoked from the NGCp alpha. These results suggest that the antinociception produced by activation of these bulbospinal pathways is predominantly mediated by spinal delta2 opioid receptors and that there is little, if any, contribution by spinal delta1 opioid receptors.  相似文献   

8.
Studies have shown that midazolam acts in the brain to antagonize the antinociception produced by morphine. The purpose of this study was to determine if spinal dynorphin A(1-17) (Dyn) was involved in the antagonistic effects of midazolam. A number of drugs when administered intracerebroventricularly (ICV) to mice release Dyn in the spinal cord to antagonize morphine-induced antinociception. In the present study using the mouse tail-flick test, midazolam administered ICV produced a dose related reduction of the antinociception induced by morphine given intrathecally (IT). The antagonistic action of midazolam against morphine-induced antinociception involved the release of Dyn in the spinal cord, as evidenced by the following results. 1) Administration of naloxone, nor-binaltorphimine and dynorphin antiserum, IT, eliminated the antagonistic effect of midazolam, given ICV, against morphine. Treatment with these opioid antagonists and dynorphin antiserum is known to inhibit the action of spinally released Dyn. 2) Production of desensitization to the effect of spinal Dyn by pretreating with morphine, 10 mg/kg subcutaneously 3 h before the tail-flick test, abolished the antagonistic action of midazolam given ICV. A 3-h pretreatment with midazolam, ICV, also produced desensitization to the antianalgesic action of Dyn given IT. 3) Elimination of the Dyn component of action of midazolam by administration of naloxone, nor-binaltorphimine and dynorphin antiserum, IT, uncovered slight antinociceptive activity of midazolam, given ICV. Coadministration of flumazenil (a benzodiazepine antagonist), bicuculline (a GABA antagonist) and picrotoxin (a chloride ion channel blocker) inhibited the midazolam effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have recently reported that the antinociception induced by etorphine given i.c.v. is mediated in part by the stimulation of both mu- and epsilon-opioid receptors and the activation of both monoaminergic and opioidergic descending pain control systems. [Xu J. Y. et al. (1992) J. Pharmac. exp. Ther. 263, 246-252]. Since the opioid epsilon-receptor-mediated antinociception induced by beta-endorphin is mediated by the release of [Met]enkephalin and subsequent stimulation of delta-opioid receptors in the spinal cord, the present studies were designed to determine if beta-endorphin-like action is also involved in etorphine-induced antinociception. The tail-flick test was used to assess the antinociceptive response performed in male ICR mice. Etorphine at doses from 5 to 20 ng given i.c.v. produced a dose-dependent inhibition of the tail-flick response. The inhibition of the tail-flick response induced by etorphine given i.c.v. was antagonized by intrathecal pretreatment for 60 min with antiserum against [Met]enkephalin (10 microg), but not with antiserum against [Leu]enkephalin (10 microg) or dynorphin A (1-13) (10 microg). Desensitization of delta-opioid receptors in the spinal cord by intrathecal pretreatment with [Met]enkephalin (5 microg) for 60 min attenuated i.c.v. administered etorphine-induced tail-flick inhibition. However, intrathecal pretreatment with [Leu]enkephalin (5 microg) or dynorphin A (1-17) (0.1 microg) for 60 min did not attenuate i.c.v. administered etorphine-induced tail-flick inhibition. The results indicate that antinociception induced by etorphine given i.c.v. is mediated in part by the stimulation of the epsilon-opioid receptor at the supraspinal sites and by the release of [Met]enkephalin, which subsequently stimulates delta-opioid receptors in the spinal cord.  相似文献   

10.
The antinociceptive effects of the mu opioid agonists morphine, fentanyl, etonitazene, and the high-potency fentanyl analog NIH 10741 were assessed before and after administration of the irreversible mu opioid antagonist clocinnamox (CCAM) in a mouse acetic acid-induced writhing procedure. CCAM caused hyperalgesia and shifted the dose-response curves of all 4 tested agonists to the right in a dose-dependent manner without, however, preventing the complete suppression of writhes by agonist doses >100–20,000 times their respective ED?? values. In the case of etonitazene and NIH 10741, 10 mg/kg CCAM produced biphasic agonist dose-response curves. Further experiments with naltrexone, naltrindole, and nor-binaltorphimine suggested that in the presence of 10 mg/kg CCAM, low- to intermediate-agonist doses produced mu opioid-mediated antinociception, whereas very high agonist doses (530–2,800-fold higher than their ED?? value under control conditions) suppressed writhing by nonopioid mechanisms. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
Heroin administered i.c.v. acts on supraspinal mu opioid receptors in ICR mice but on delta receptors in Swiss Webster mice. The purpose of this study was to determine the degree to which genotype plays a role in the opioid receptor selectivity of heroin across a range of fully inbred strains of mice. Six inbred strains were given heroin i.c.v. 10 min before the tail-flick test. Differences in the descending neurotransmitter systems involved in supraspinal opioid-induced analgesia were evaluated as the first step. Antagonism by bicuculline given intrathecally indicated the involvement of supraspinal delta receptors in activating spinal gamma-aminobutyric acid (GABA) receptors; antagonism by intrathecal methysergide indicated either mu or kappa receptor involvement. Antagonism by intrathecal yohimbine implicated mu and eliminated kappa receptor involvement. Intracerbroventricular opioid antagonists (beta-funaltrexamine, 7-benzylidenenaltrexone, naltriben, or nor-binaltorphimine) provided further differentiation. Based on these initial results, receptor selectivity was determined by more extensive ED50 experiments with i.c.v. administration of heroin with opioid antagonists, beta-funaltrexamine (for mu), naltrindole (for delta), and nor-binaltorphimine (for kappa). The combined results indicated that heroin analgesia was predominantly mediated in C57BL/6J by delta, in DBA/2J and CBA/J by mu, and in BALB/cByJ and AKR/J by kappa receptors. The response in C3H/HeJ appeared to involve mu receptors. The results indicate that the opioid receptor selectivity of heroin is genotype-dependent. Because these genotypes are fully inbred, the genetically determined molecular and neurochemical substrate mediating the different opioid receptor selectivities of heroin can be studied further.  相似文献   

12.
N-Methyl-D-aspartate (NMDA) receptor antagonists have been shown to block the development of antinociceptive tolerance to morphine. Assessment of the effects of NMDA antagonists on development of antinociceptive tolerance to selective opioid mu (mu) and delta (delta) agonists, however, has not been reported. In these experiments, selective mu and delta receptor agonists, and morphine, were repeatedly administered to mice either supraspinally (i.c.v.) or systemically (s.c.), alone or after pretreatment with systemic NMDA antagonists. Antinociception was evaluated using a warm-water tail-flick test. Repeated i.c.v. injections of mu agonists including morphine, fentanyl, [D-Ala2, NMePhe4, Gly-ol]enkephalin (DAMGO) and Tyr-Pro-NMePhe-D-Pro-NH2 (PL017) or [D-Ala2, Glu4]deltorphin, a delta agonist, or s.c. injections of morphine or fentanyl, produced antinociceptive tolerance as shown by a significant rightward displacement of the agonist dose-response curves compared to controls. Single injections or repeated administration of MK801 (a non-competitive NMDA antagonist) or LY235959 (a competitive NMDA antagonist) at the doses employed in this study did not produce behavioral toxicity, antinociception or alter the acute antinociceptive effects of the tested opioid agonists. Consistent with previous reports, pretreatment with MK801 or LY235959 (30 min prior to agonist administration throughout the tolerance regimen) prevented the development of antinociceptive tolerance to i.c.v. or s.c. morphine. Neither NMDA antagonist, however, affected the development of antinociceptive tolerance to i.c.v. fentanyl, DAMGO, or [D-Ala2, Glu4]deltorphin. Additionally, MK801 pretreatment did not affect the development of antinociceptive tolerance to i.c.v. PL017 or to s.c. fentanyl. Further, MK801 pretreatment also did not affect the development of tolerance to the antinociception resulting from a cold-water swim-stress episode, previously shown to be a delta-opioid mediated effect. These data lead to the suggestion that the mechanisms of tolerance to receptor selective mu and delta opioids may be regulated differently from those associated with morphine. Additionally, these findings emphasize that conclusions reached with studies employing morphine cannot always be extended to 'opiates' in general.  相似文献   

13.
The purpose of this investigation was to evaluate changes in the sensitivity of spinal opioid receptors to selective antagonists in rats rendered dependent on intrathecal (i.t.) butorphanol and morphine. Using quantitative autoradiography, competitive binding assays with selective opioid antagonists were performed in the spinal cord sections of i.t. butorphanol- and morphine-dependent rats in which withdrawal was precipitated by i.t. naloxone. In butorphanol-dependent rats, the spinal kappa-opioid receptor developed a greater degree of antagonist supersensitivity than the spinal delta- and mu-opioid receptors did. In contrast, the spinal mu-opioid receptor became more sensitive than the delta-opioid receptor in morphine-dependent rats. These results indicate that differential supersensitivity of spinal opioid receptors was induced after chronic i.t. infusions of butorphanol and morphine.  相似文献   

14.
Evidence in vivo has suggested the existence of subtypes of the delta opioid receptor (DOR), which have been termed delta 1 and delta 2. These proposed DOR subtypes are thought to be activated by [D-Pen2, D-Pen5]enkephalin (DPDPE, delta 1) and [D-Ala2, Glu4]deltorphin (delta 2). Recent work in which an antisense oligodeoxynucleotide (oligo) to a cloned DOR was administered by the intrathecal (i.th.) route has demonstrated a reduction in the antinociceptive actions of both i.th. DPDPE and [D-Ala2, Glu4]deltorphin, but not of [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAMGO, mu agonist) in mice. The present investigation has extended these observations by administering the same DOR antisense oligo sequence by the intracerebroventricular (i.c.v.) route and evaluating the antinociceptive actions of i.c.v. agonists selective for delta, mu and kappa receptors. I.th. treatment with DOR antisense oligo, but not mismatch oligo, significantly inhibited the antinociceptive actions of both i.th. DPDPE and [D-Ala2, Glu4]deltorphin but not of i.th. DAMGO or U69,593 (kappa agonist), confirming previous data. In contrast, i.c.v. DOR antisense oligo, but not mismatch oligo, selectively inhibited the antinociceptive response to i.c.v. [D-Ala2, Glu4]deltorphin without altering the antinociceptive actions of i.c.v. DPDPE, DAMGO or U69,593. The data suggest that the cloned DOR corresponds to that pharmacologically classified as delta 2 and further, suggest that this delta receptor subtype may play a major role in eliciting spinal delta-mediated antinociception.  相似文献   

15.
Antinociception can be produced at the spinal level by activation of opioidergic, noradrenergic, and serotonergic systems. We tested the antinociceptive effects of combined activation of all three systems. Antinociception was assessed in the rat tail-flick test, and drugs were administered via an intrathecal catheter. Morphine, the norepinephrine uptake inhibitor desipramine, and serotonin produced antinociception of their own. The combination of subthreshold doses of morphine 1 microg and of desipramine 3 microg produced pronounced antinociception that was antagonized by yohimbine. The combination of subthreshold morphine with serotonin 50 microg or desipramine with serotonin caused only small antinociceptive effects. When morphine combined with desipramine was decreased to a subthreshold dose, we observed pronounced antinociception when a subthreshold dose of serotonin was added. A complex interaction can be supposed by results obtained with antagonists. The activation of all three neurotransmitter systems with small doses of agonists may represent an effective principle for pain control at the spinal level. IMPLICATIONS: Pain sensations are modulated at the spinal level by opioids, noradrenergic drugs, and serotonin. Using a rat model, we showed that the concurrent use of drugs from each of these classes produces good pain control at doses that should avoid the side effects associated with larger doses of each individual drug.  相似文献   

16.
Recently, mu-, delta- and kappa-opioid receptors have been cloned and relatively well-characterized. In addition to three major opioid receptor types, more extensive studies have suggested the possible existence of other opioid receptor types that can be classified as non-mu, non-delta and non-kappa. Based upon anatomical and binding studies in the brain, the sensitive site for an endogenous opioid peptide, beta-endorphin, has been postulated to account for the unique characteristics of the opioid receptor defined as a putative epsilon-opioid receptor. Many epsilon-opioid receptors are functionally coupled to G-proteins. The functional epsilon-opioid receptors in the brain are stimulated by bremazocine and etorphine as well as beta-endorphin, but not by selective mu-, delta- or kappa-opioid receptor agonists. Epsilon-opioid receptor agonists injected into the brain produce profound antinociception. The brain sites most sensitive to epsilon-agonist-induced antinociception are located in the caudal medial medulla such as the nucleus raphe obscures, nucleus raphe pallidus and the adjacent midline reticular formation. The stimulation of epsilon-opioid receptors in the brain facilitates the descending enkephalinergic pathway, which probably originates from the brainstem terminating at the spinal cord. The endogenous opioid Met-enkephalin, released in the spinal cord by activation of supraspinal epsilon-opioid receptors, stimulates spinal delta2-opioid receptors for the production of antinociception. It is noteworthy that the epsilon-opioid receptor-mediated pain control system is different from that of other opioid systems. Although there appears to be no epsilon-selective ligand currently available, these findings provide strong evidence for the existence of the putative epsilon-opioid receptor and its unique function in the brain.  相似文献   

17.
Neurotropin, a non-protein extract from the inflamed skin of rabbits inoculated with vaccinia virus, has been clinically used as an analgesic drug in Japan. Its analgesic effect has been demonstrated by reduced mechano-nociception in hyperalgesic rats exposed to SART-stress (a repeated cold stress) for 5 days. In order to clarify the mechanism of the analgesic effect of neurotropin at the spinal cord level, we examined the effects of several neurotransmitter receptor antagonists given by intrathecal (i.t.) injection on the antinociceptive effect of intraperitoneally (i.p.) injected neurotropin [100 and 200 Neurotropin Unit (NU)/kg]. The analgesic effect of neurotropin was significantly inhibited not only by methysergide (100 nmol/rat, i.t.), a non-selective antagonist against serotonin (5-HT), but also MDL 72222 (30 nmol/rat, i.t.), a selective 5-HT3 antagonist, but not influenced by ketanserin (100 nmol/rat, i.t.), a 5-HT2A antagonist. The antinociceptive effect of neurotropin (200 NU/kg, i. p.) was significantly inhibited also by yohimbine (30 nmol/rat, i.t.), a noradrenergic alpha2 antagonist. However, the analgesic effect of neurotropin (100 and 200 NU/kg, i.p.) was not influenced by naloxone (30 nmol/rat, i.t.), an opioid antagonist. These results suggest that the mechanism of the antinociceptive effect of neurotropin is via enhancement of endogenous descending pain inhibitory pathways of the serotonergic and noradrenergic systems, especially involving 5-HT3 and noradrenergic alpha2 receptors in spinal dorsal horn in which these neurons terminate. No influence of opioid receptors at the spinal cord level is indicated.  相似文献   

18.
1. Debate exists as to the nature of antidepressant-induced antinociception. It is unclear whether antidepressants are inherently antinociceptive, are able to potentiate opioid antinociception or both. We have used the acetic acid induced abdominal constriction assay in mice to investigate antidepressant-induced antinociception. 2. All the antidepressants tested (s.c.) produced dose-dependent protection against acetic acid-induced abdominal constriction. Similarly, morphine and aspirin were also effective antinociceptive agents in this nociceptive assay. 3. Opioid antagonists, naloxone (0.5 mg kg(-1), s.c.) and naltrindole (1 mg kg(-1), s.c.), shifted the dose-response relationships to the right for each of the antidepressant agents (dothiepin, amitriptyline, sibutramine, (+)-oxaprotiline and paroxetine). In this context the naloxone dose-ratios were 1.95, 3.90, 2.32, 4.50 and 2.65, with naltrindole dose-ratios of 4.36, 17.00, 4.28, 11.48 and 2.65 were obtained, respectively. Naloxone also shifted the morphine dose-response relationship to the right, by a factor of 2.62, whilst naltrindole had no effect upon morphine antinociception. Aspirin antinociception remained unaffected by both opioid antagonists. 4. The enkephalin catabolism inhibitor acetorphan, by itself, produced no activity in this test at a dose of 10 mg kg(-1) (s.c.). However, at higher doses, acetorphan produced a linear dose-response relationship against acetic acid-induced abdominal constriction. 5. When acetorphan was administered before either the antidepressants or morphine, there was a clear potentiation of the antidepressant- or morphine-induced antinociception. However, acetorphan had no effect on aspirin antinociception. 6. Since neither of the opioid antagonists were able to attenuate, nor was acetorphan able to potentiate, aspirin antinociception, we concluded that the mechanism of antidepressant-induced antinociception is different from that of the non-steroidal anti-inflammatory drugs. 7. These data are consistent with the view that antidepressants may induce endogenous opioid peptide release, as shown by the acetorphan study. In this context, the ability of naltrindole to displace the antidepressant dose-response relationship to the right without affecting morphine antinociception, implicates the delta-opioid receptor and endogenous opioid peptides in antidepressant-induced antinociception.  相似文献   

19.
Calcitonin gene related peptide (CGRP), one of the most abundant peptides in the spinal cord, is localized in primary afferents and released following nociceptive stimuli. Its colocalization and corelease with substance P, a well-known nociceptive neuropeptide, support the importance of CGRP in pain mechanisms. However, its distinctive function in that regard remains to be fully established. Recently, we reported that increases in CGRP-like immunostaining and decrements in specific 125I-labelled human CGRP alpha ([125I]hCGRP alpha) binding sites in the spinal cord were correlated with the development of tolerance to the spinal antinociceptive action of a mu opioid agonist, morphine. The goal of the present study was to investigate whether the development of tolerance to other classes of opioids, namely, delta and kappa agonists, can also alter CGRP-like immunostaining and receptors in the rat spinal cord. The antinociceptive effects of all opioids were monitored by the tail-immersion test. Tolerance to their antinociceptive properties was induced by the infusion for 7 days of mu (morphine sulfate, 7.5 micrograms/h), delta D([D-Pen2,D-Pen5]enkephalin (DPDPE), 2.0 micrograms/h), and kappa (U-50488H, 10.0 micrograms/h) related agonists at the spinal level (L4), using osmotic minipumps. We confirmed that rats chronically treated with morphine showed significant decreases in [125I]CGRP alpha binding in laminae I, II, and III of the L4 spinal cord, while CGRP-like immunostaining was increased in these same laminae. Similar effects were observed following a treatment with the delta agonist, DPDPE, while the kappa agonist, U-50488H, apparently only slightly decreased [125I]CGRP alpha] binding in lamina II. Binding in other laminae and CGRP-like immunostaining were not affected. These results suggest a specific interaction between spinal CGRP systems and the development of tolerance to the spinal antinociceptive effects of mu- and delta-related agonists.  相似文献   

20.
The objective of this study was to determine which nicotinic receptor subtypes are involved in antinociception and their site of action. For that, the antinociceptive effects of several nicotinic receptor ligands were evaluated in the tail-flick test both after s.c. and intrathecal (i.t.) administration. Nicotine and other nicotine agonists increased tail-flick latencies in a dose-dependent manner after both routes of administration. Epibatidine enantiomers were the most potent agonists examined. Cytisine, a potent nicotinic ligand, failed to elicit antinociception when injected either i.t. or s.c. Despite some similarities in the effects of nicotinic agonists after i.t. and s.c. injections, their rank-order potency was different. In contrast to the s.c. results, the stereoselectivity of nicotine's effect after i.t. administration was minimal. When various nicotinic antagonists were compared after i.t. and s.c. administration, the results showed that mecamylamine and dihydro-beta-erythroidine differ in potency and their degree of antagonism of some of the nicotinic agonists given i.t. These data suggest that different subtypes of nicotinic receptors may exist in the spinal cord. A good correlation was found between binding affinity to [3H]-nicotine binding sites and analgesic potency after i.t. (r = 0.82), suggesting the involvement of alpha 4 beta 2 receptor subunits. In contrast, studies with MLA and alpha-BGTX suggested a minimal role for alpha-BGTX-sensitive receptors in the antinociceptive effect of nicotinic agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号