首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the energy scaling and beam quality improvement of a long-pulse laser pumped solid-state dye laser using a unique new zigzag optical configuration are presented. A beam quality of 1.7 XDL was measured using an unstable optical cavity at a laser output of 200 mJ. Single pulse energies as high as 1 J have been achieved. The laser has been operated at 5 Hz with an average output of about 250 mJ for runs up to 200 pulses  相似文献   

2.
We report a substantial advance in dye laser performance using a zig-zag optical cavity. This configuration drastically reduces the effects of intrapulse medium disturbances due to acoustics and thermal lensing on pulse duration, beam quality, and extraction efficiency. Laser outputs of up to 2 J were observed from Coumarin-498 dye pumped by a KrF excimer laser. The dye laser output faithfully replicates the hat-top KrF laser pump pulse over the entire 1.7-μs pulse duration. An intrinsic laser photon conversion efficiency (Photonsin/Photonsabsorbed) of 44% was measured. When unstable resonator optics were used, beam qualities of about 2 XDL were measured  相似文献   

3.
We report on the power scaling of a flashlamp-pumped Cr:LiSrAlF/sub 6/ thin-slab zig-zag laser operating at repetition rates up to 5 Hz. Average output power of 44 W with pulse energies of 8.8 J was achieved operating with a stable cavity. Excellent medium control was also obtained during this operation. Also demonstrated at 5 Hz was operation at energies /spl sim/ 0.5 J in Q-switched mode with unstable optics and bandwidth control, beam quality < 1.5 XDL, bandwidth /spl sim/ 1 GHz, and root-mean-square beam jitter of less than half of a diffraction limited far-field spot radius.  相似文献   

4.
推导了准稳态下横向抽运的脉冲染料激光放大器的简化速率方程,提出了双侧横向抽运方式的脉冲染料激光放大器的设计原则和设计方法.应用高功率脉冲染料激光放大器的物理设计结果,研制了输出功率为50 W的脉冲染料激光放大器的实验装置.采用铜蒸气激光(CVL)作为抽运光,在此染料激光放大器上进行了实验研究,获得染料激光输出功率为52 W,抽运激光功率提取效率为41%.给出了染料激光波长、注入染料激光功率以及抽运激光的时间和空间匹配特性与染料激光放大器输出激光功率和抽运激光功率提取效率的相互关系,讨论了染料溶液浓度对双侧横向抽运方式的脉冲染料激光放大器的输出光束质量的影响.  相似文献   

5.
We report a substantial reduction of frequency chirp of a single-mode laser-pumped zigzag dye laser. A linear optical cavity using counterpropagating orthogonally polarized waves was injection-seeded at 568 mn and operated with a laser output of about 1 J. The chirp was controlled by an intracavity Pockels cell that was configured to add optical density at a rate which counterbalanced the decrease in optical density due to dye-solvent heating during the ~1-μs laser pulse. Heterodyne measurements were used to determine that the bandwidth was near the transform limit and chirp rate of ~1 MHz/μs. The beam quality of the laser was measured at 10 Hz as 1.7 XDL  相似文献   

6.
A transverse gas flow configuration has been developed utilizing RF discharge waveguide technology for several infrared lasers. Two potential applications have been identified: pulsed chemical laser and CW CO2laser. In the 3.8 μm DF laser, the flowing gas device provides rapid gas replenishment to maintain high electrical efficiency at high repetition rates. An average power of 0.6 W was achieved at 1 kHz. An order of magnitude power improvement can potentially be developed in a closed cycle system. In the CW CO2laser, the flowing gas provides efficient cooling so that high output power per unit gain length can be achieved. A 16 W output in a 20 cm gain length device, corresponding to a record 0.8 W/cm output has been demonstrated. This system can be developed into a 20-60 W laser with a 20-50 cm gain length.  相似文献   

7.
A pulse output energy of 170 J has been achieved from an XeF(C→A) laser system, pumped by a pair of counterpropagating, three-meter-long electron beams. This represents a record for all types of pumping, for this excimer system. Energy was extracted from a volume of ~100 L, using a free-running stable oscillator. No evidence of laser oscillations on the competing XeF(B→X) transition was observed. Within the extraction volume the laser gas was pumped at a rate of 140 kW/cm3 (time average value), for a period of 1.7 μs. The optical cavity was folded, giving a gain length of 6 m. The optical pulse duration was 0.8 μs (full width at half maximum), and the observed flux buildup time of ~1 μs was consistent with modeling and a measurement of the net gain. The specific output energy was 1.7 J/L which is comparable to that achieved in previous, small scale experiments at somewhat higher pump rate. The results confirm the volumetric scalability of the electron beam pumped XeF(C→A) laser system to high output energy per pulse, and the feasibility of operating this system at a low electron beam pump rate which relaxes constraints on the design of the electron gun and pulse power subsystems in a high output energy device. Means for extending the laser pulse duration and increasing the output energy of the specific test device are discussed. An output energy of ~1000 J is projected for an optimized gas cell width, for full size resonator mirrors, and with injection  相似文献   

8.
We report single-mode operation of a laser pumped zigzag dye laser for pulse lengths >1 μs with beam quality close to the diffraction limit. A unique linear optical cavity using counter-propagating orthogonally polarized waves was used. Laser efficiency measurements performed with a stable cavity had outputs of greater than 1.7 J at 568 mn using Pyrromethene-567 dye. The intrinsic laser efficiency was 55% with a slope efficiency of 77%. Single-mode operation was achieved using an unstable resonator with intra-cavity etalons to control the free running modes of the cavity and seeding with a single-mode Kr-ion laser operating at 568 nm. Heterodyne measurements were used to determine that the bandwidth was near the transform limit with the frequency chirping at a rate ~60 MHz/Ms. Far-field measurements of the beam quality indicated close to diffraction limited output  相似文献   

9.
25-W CW high-brightness tapered semiconductor laser-array   总被引:2,自引:0,他引:2  
High-power high-brightness laser diode arrays comprising 25 tapered laser oscillators have been fabricated. The devices, based on recently developed low-modal gain epitaxial layer-structures, deliver a maximum output power of more than 25-W continuous-wave. A high beam quality uniformity is achieved with an average beam quality factor of M 2=2.6 for each individual emitter. Compared to conventional broad-area laser diode arrays the brightness of each emitter is improved by more than an order of magnitude in the slow-axis direction. These arrays have the potential to produce optical power densities as high as 1 MW/cm2  相似文献   

10.
Transient thermal effects induced in the laser medium under heat capacity (HC) mode of operation and its influence on the output laser performance is presented. Thermal loading and the resulting negative lensing effects are shown to be different under lasing and nonlasing conditions. Negative refractive power of laser rod affecting the laser resonator stability was observed to be the major cause for the decline in the output power in HC mode. An active resonator model based on measured thermal refractive power is discussed and impact of resonator design parameters on laser beam quality is investigated. An output power of 152 W in HC mode for a run time of 5 s has been obtained. Comparative performance results in conventional continuously cooled (CC) mode is also discussed to highlight the characteristic differences in the two operating modes. Nearly 2–3 times better output beam quality was obtained in HC mode as compared to CC mode.   相似文献   

11.
An optically pumped semiconductor vertical external cavity surface emitting laser, with high output power and excellent beam quality operating at a wavelength near 1.05 /spl mu/m, is reported. A transparent diamond heat spreader was used for thermal management of the laser. The gain structure grown by molecular beam epitaxy includes 13 compressively strained InGaAs quantum wells. Maximum output power of 4 W with diffraction-limited beam (M/sup 2//spl les/1.15) was achieved using a 2% output coupler and incident pump power of 20 W. It is shown that power scalability is feasible with the presented laser geometry.  相似文献   

12.
High power efficient dye amplifier pumped by copper vapor lasers   总被引:3,自引:0,他引:3  
An extensive study has been performed on a dye amplifier pumped by copper vapor lasers. The amplifier utilizes a transverse pumping configuration in which the dye flow, pump beam, and dye extraction beam are mutually orthogonal. The operating characteristics of the amplifier have been studied using four dye-solvent systems which span the wavelength range continuously from 560 to 690 nm. Optimum conversion efficiencies of 18-30 percent at output powers of 0.41-0.76 W have been measured from the four dyes at a 6 kHz pulse repetition rate. The efficiencies and output powers were limited only by the available copper laser pump power. Analytic expressions have been obtained for the amplifier power gain and efficiency using a rate equation treatment of the system dynamics. Excellent agreement is obtained between the predicted and measured amplifier gain characteristics for rhodamine 6G.  相似文献   

13.
Output power, beam divergence, and frequency stability in a double-prism dye laser cavity have been investigated as a function of temperature. For rhodamine 6G dye, it has been found that output power decreases by nearly 34 percent, beam divergence increases from 4.5 to 6.5 mrads, and the laser frequency is shifted by as much as 2 cm-1, for an increase of 10°C above room temperature. The efficiency of the double-prism dye laser oscillator employed here was 18 percent (for N2laser pump) at a linewidth of 0.07 cm-1(FWHM). Laser linewidth did not vary in the temperature range investigated here.  相似文献   

14.
为了实现高功率、高光束质量的激光输出,采用脉冲激光同步延时控制技术,将多束脉冲激光按时序合成一束脉冲激光,可用于产生大功率激光源。利用所设计的激光脉冲同步延时控制器,控制各个激光脉冲的时序,使按时序输出的多路激光脉冲依次通过光束合成装置,在空间合成为一束。在实验中将3束脉冲激光束合成,合成效率达到95.8%。结果表明,合束后的脉冲激光功率基本等于各束光相加的总和,同时保持了较好的光束质量。  相似文献   

15.
为了实现固体激光器高功率、高光束质量的输出,设计了一种激光二极管(LD)阵列抽运的主振荡级与功率放大器(MOPA)结构的Nd∶YVO4激光器。该激光器的振荡级采用平-平谐振腔结构,并使用棱镜组对激光二极管阵列的抽运光整形,消除了激光二极管阵列抽运光不对称对振荡器输出光束质量的影响,在连续工作条件下获得了6.1 W的激光输出,其光束质量M2因子为M2x=1.14,M2y=1.13,光-光转换效率为25.6%。放大级采用具有近共焦、非稳腔特点的折叠光路结构,使振荡级激光光束10次通过放大级晶体,并且有效地抑制了放大自发辐射(ASE)和寄生振荡。在振荡级以6.1 W注入放大器时,得到最大输出功率26.8 W,此时放大器提取效率为29.1%,输出光束质量M2因子为M2x=2.08,M2y=1.92。  相似文献   

16.
High-frequency gyrotrons with high output power are mainly used for microwave heating and current drive in plasmas for thermonuclear fusion. The development of high-power gyrotrons in continuous wave (CW) operation has been in progress for several years in a joint collaboration between different European research centers and an industrial partner. The status of the development of the 140-GHz continuously operating gyrotrons with an output power of 1 MW for the stellarator Wendelstein 7-X will be described. An output power of 890 kW has been achieved with a pulse length of 3 min. limited by the available high-voltage power supply at an electron beam current of 40 A. At a reduced beam current of 27 A , an output power of 540 kW was measured with a pulse length of 939 s. For the next fusion plasma device international thermonuclear experimental reactor, gyrotrons with a higher output power of about 2 MW are desirable. In short-pulse experiments, the feasibility of fabrication of coaxial cavity gyrotrons with an output power up to 2 MW, CW, has been demonstrated, and the information necessary for a technical design has been obtained. An output power of 2.2 MW has been reached in stable operation (without mode competition). At the nominal output power of 1.5 MW an efficiency of 48% could be obtained with single-stage depressed collector. The development of frequency tunable gyrotrons operating in the range from 105 to 140 GHz for stabilization of current driven plasma instabilities in fusion plasma devices (neoclassical tearing modes) is another task in the development of gyrotrons at the Forschungszentrum Karlsruhe.  相似文献   

17.
Continuous wave laser action has been achieved in a superlattice quantum cascade device operating on surface plasmon waveguide modes. The emission wavelength λ~19 μm is by far the longest ever reported for continuous wave III-V semiconductor lasers. The output power at cryogenic temperature is of the order of the mW  相似文献   

18.
高功率激光二极管端面抽运复合晶体激光器的研究   总被引:8,自引:5,他引:8  
在高功率激光二极管抽运固体激光器中,热效应已成为获得高输出功率和高光束质量的最大阻碍因素.用有限元方法研究了高功率激光二极管端面抽运Nd∶YVO4激光器中热透镜分布规律,提出了用复合晶体消除热透镜效应的方法.研究表明在端面抽运的传统单一Nd∶YVO4晶体激光器中,由于抽运功率密度很高,热透镜效应非常严重,由端面变形而造成的热透镜效应约占整个热透镜效应的50%;而采用复合晶体能够很好地消除由端面变形而造成的热透镜效应,同时得到很好的冷却效果,获得比采用传统单一晶体高出许多的基模输出功率和更好的光束质量.实验证明,采用复合结构晶体在23 W的抽运功率水平下得到了11 W的基模输出功率,光束质量因子M2 <1 5,光光转换效率达到48%.  相似文献   

19.
何旭宝  肖虎  马鹏飞  张汉伟  王小林  许晓军 《红外与激光工程》2021,50(2):20200385-1-20200385-7
基于双色镜的光谱合成技术可突破单个光纤激光器输出功率极限的限制,是获得高功率、高光束质量激光输出的有效技术手段。理论上,初步探究了参与合成的光束位置偏移及倾斜误差对合成光束质量的影响,结果表明光束倾斜误差对合成系统的输出特性影响显著。实验上,开展了两路窄线宽光纤激光器的合成实验,使用双色镜作为合成元件,获得了最大输出功率为2355 W的高光束质量共孔径合成输出,光束质量M2为1.9,合成效率大于99%,实验验证了双色镜在反射和透射情况下具有较高的效率。通过进一步提高单路光纤激光的输出功率或增加合成路数,可以实现更高功率和更好光束质量的共孔径激光输出。  相似文献   

20.
一种新型皮秒脉冲激光器   总被引:1,自引:1,他引:0  
一种新型皮秒脉冲激光器由序列脉冲激光的产生、单脉冲激光的选取、放大和倍频等部分组成,激光器工作物质选用Nd∶YAG晶体,用两个格兰棱镜分别作为起偏器和检偏器,激光器的振荡级利用被动锁模染料产生的锁模序列脉冲激光,经过单脉冲选择器选取出其中的一个单脉冲激光,再经激光器放大部分的放大和倍频晶体的倍频后,激光器最终输出能量为120mJ,脉冲宽度为100ps,波长为532nm的单脉冲激光,其功率约为1.2×109W,功率密度约为4.2×109W/cm2,系统的外触发同步精度优于2μs。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号