首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
《Electronics letters》2008,44(17):1027-1029
A novel cost-effective and acoustic-resonance-free electronic ballast used to drive automotive high intensity discharging (HID) lamps that utilise a constant lamp power control scheme is proposed. The presented ballast is comprised of a buck-boost flyback converter to provide negative DC voltages and a half-bridge-type inverter to supply the lamp with low-frequency, square-wave AC voltage/ current. Owing to its low-frequency operation, no acoustic resonance occurs on the automotive HID lamps. Design guidelines and experimental results are demonstrated for a 35 Wautomotive HID lamp prototype ballast operating at 400 Hz switching frequency with battery input DC voltage of 12 V.  相似文献   

2.
In case where electronic ballast employing a valley-fill passive power-factor correction (PFC) circuit is used for feeding fluorescent tamps, a new method to reduce crest factor of the lamp current is studied in this paper. It is known that a 50% valley-fill passive PFC provided for high input power factor results in undesirable value of crest factor of the fluorescent lamp current, In order to reduce crest factor to a lower value, a pulse frequency modulation technique based on the waveform of the DC-link voltage which is predetermined by the passive PFC circuit is taken into the switching control action of the electronic ballast. An equation-based analysis between the crest factor of lamp current and the effect of varying the inverter switching frequency is comprehensively performed. Several simulation and experiment results illustrate the Effectiveness of the proposed control scheme  相似文献   

3.
An electronic dimming ballast with a lead-lag tank operation (LLTO) having the properties of high efficiency and low stress is introduced in this paper. The ballast is configured with a voltage-fed half-bridge series-resonant parallel-loaded inverter (SRPLI) acting as a lamp driver. It is loaded with resonant tanks which are designed and operated to be capacitive and inductive to theoretically achieve both zero-voltage switching (ZVS) and zero current switching (ZCS) and to eliminate the reactive current circulating through the switches, resulting in low switching and conduction losses. Moreover, the merit of a successive lamp ignition can be attained with the proposed operation scheme so that current stress imposed on the switches can be reduced. With the plasma model of fluorescent lamps, the analysis, operating principle, and dimming control strategy of the electronic ballast are described in detail. On the other hand, the limitations of the proposed scheme are pointed out. Computer simulation results and experimental measurements are used to verify the theoretical prediction and analytical discussion  相似文献   

4.
In this paper, a new control method for electronic ballasts based on the use of a variable inductor is presented. The main goal is to perform the complete control of the electronic ballast by maintaining the switching frequency constant and without using other parameters of the power converter, such as input voltage or duty cycle. The magnetic regulator is controlled by means of a dc current, which allows performing both lamp soft starting and lamp dimming. Apart from the important advantage of keeping a constant frequency during full electronic ballast operation, the proposed method presents additional advantages when compared to other control methods, such as inherent isolated control, more linear control characteristics, constant electrode power, and higher efficiency. Experimental results from a 36-W linear fluorescent lamp prototype are presented.  相似文献   

5.
This paper describes a high-power-factor electronic ballast for fluorescent lamps. The converter offers a high power factor and a high-frequency supply to the lamp using a single switch. In spite of its simplicity, an excellent performance concerning load and supply is achieved, ensuring a sinusoidal and in-phase supply current. High power factor is achieved by using a flyback converter operating in discontinuous conduction mode. Operating principle, design equations, component stress, and efficiency are presented. Experimental results have been obtained for one 40-W fluorescent lamp operating at 50-kHz switching frequency and 220-V line voltage  相似文献   

6.
A low frequency architecture is proposed for driving parallel cold cathode fluorescent lamps (CCFLs) in large screen liquid crystal display (LCD) TV backlighting applications. Key to the architecture is a proposed capacitive coupling approach for aiding lamp ignition. A dc voltage is applied to the lamp electrodes while an ac voltage is applied to an external plate for capacitive coupling. The result is reliable, simultaneous ignition of parallel lamps with a required applied dc voltage near the lamp steady-state operating voltage. The complete system architecture includes a single high voltage converter, a pulse lamp ignition circuit, current control circuits and a single backlight controller. The topology is capable of driving a large number of parallel lamps with independent lamp current regulation, while avoiding ac coupling losses in steady-state operation and achieving significant reduction in reactive components when compared to typical high frequency ac ballast designs. Experimental results are presented for a system of four parallel 250 mm length lamps, demonstrating simultaneous parallel lamp ignition and dc current regulation.  相似文献   

7.
A high-power factor (HPF) electronic ballast, which exhibits low switching losses, is presented in this paper. The proposed topology is based on a single power-processing stage, which provides high-frequency voltage to fluorescent lamps and HPF to the utility line. The lamps are driven by a self-oscillating LC parallel resonant power converter of great simplicity and attendant low cost and increased reliability. HPF is achieved by using a nonconventional boost power converter operating in critical conduction mode. Theoretical analysis and experimental results for two 40-W fluorescent lamps operating at 50 kHz from a 127-V utility line have been obtained, which demonstrate the high efficiency and HPF of this electronic ballast  相似文献   

8.
金属卤化物灯的高频点灯和放电稳定化   总被引:2,自引:1,他引:1  
为了提高金属卤化物灯的光效,将该灯用电子镇流器在高频下燃点,观察到灯的不稳定性,称为音响共鸣现象。为了克服音响共鸣现象,介绍了四种稳定工作的方法:①在超音响共鸣的频率下工作;②在矩形波下工作;③采用适当的调制频率下工作;④采用三次谐波叠加高频正弦波点灯。本文介绍金属卤化物灯用电子镇流器、高频点灯和放电稳定化。  相似文献   

9.
The “charge pump” electronic ballast circuit, which employs a charging capacitor and a high-frequency AC source to implement power factor correction (PFC), has become an attractive topology for ballasting fluorescent lamps. However, the basic “charge pump” electronic ballast circuit has the problems of high total harmonic distortion (THD) of the input current and high crest factor (CF) of the lamp current. This paper analyzes the origin of the problems and proposes a novel solution. With the addition of two small clamping diodes, good input current (PF>0.99, THD<5%) and lamp current (CF<1.6) can be obtained with open-loop control. Experimental results are provided for verification  相似文献   

10.
A new high-power-factor (HPF) electronic ballast is introduced in this paper. The proposed topology is based on a single power processing stage, and provides a high-frequency voltage to the fluorescent lamps in addition to presenting an HPF to the utility line. The power processing stage is formed by a half-bridge circuit operating above the resonant frequency, thus providing zero-voltage switching. The self-oscillating technique is employed, which increases the converter reliability with great simplicity. HPF is achieved by using a nonconventional boost stage operating in discontinuous conduction mode, which results in a lower DC-bus voltage than that produced by the conventional boost. Theoretical analysis and experimental results have been obtained for two 40-W fluorescent lamps operating at 40-kHz switching frequency and 220-V line voltage  相似文献   

11.
This letter presents a low-cost solution for converting the popularly adopted nondimmable electronic ballast circuit for fluorescent lamps with self-oscillating series resonant inverter into a dimmable one. The dimming function is achieved by increasing the switching frequency of the inverter from the natural frequency of the resonant tank, so that less energy is coupled to the lamp. Control of the switching frequency is based on deriving an adjustable dc current source from the inductor in the resonant tank to control the operating point of the saturable chokes for driving the switches in the inverter. The overall circuit does not require any integrated circuit. A 17-W prototype has been built and tested. Theoretical predictions have been verified with experimental results. The lamp can be dimmed to 10% of the full brightness.  相似文献   

12.
This paper presents a low-cost solution of converting the popularly adopted nondimmable electronic ballast circuit for fluorescent lamps with self-oscillating series resonant inverter into a dimmable one. The dimming function is achieved by increasing the switching frequency of the inverter from the natural frequency of the resonant tank, so that less energy is coupled to the lamp. Control of the switching frequency is based on deriving an adjustable dc current source from the resonant inductor in the resonant tank to control the operating point of the saturable transformers for driving the switches in the inverter. The overall implementation does not require any integrated circuit. A 17-W prototype has been built and studied. Theoretical predictions have been verified with experimental results. The lamp can be dimmed down to 10% of the full power.  相似文献   

13.
A new charge pump power-factor-correction (CPPFC) electronic ballast with a wide range of line input voltage is proposed in this paper. Circuit derivation and DC-bus voltage stress at start-up mode are discussed. The average lamp current control with switching frequency modulation is developed to achieve constant lamp power operation and low-crest factor. The proposed CPPFC electronic ballast is analyzed, implemented, and evaluated. It features continuous line input current, low total harmonic distortion (THD), constant lamp power operation, low-crest factor, and less switching current stress with low-DC-bus voltage stress for the line voltages from 180 to 265 V  相似文献   

14.
High-power-factor electronic ballast with constant DC-link voltage   总被引:2,自引:0,他引:2  
This paper presents a high-power-factor (HPF) electronic ballast based on a single power processing stage with constant DC-link voltage. The switching frequency is controlled to maintain the DC-link voltage and the voltage across the switches constant, independently of changes in the AC-input voltage. This control method assures zero-voltage switching (ZVS) for the specified AC-input-voltage range. Besides, with an appropriate design of the fluorescent lamps' drive circuit, the lamps' power can be kept close to the rated value. The power-factor-correction (PFC) stage is formed by a boost power converter operating in the discontinuous conduction mode, which naturally provides HPF to the utility line. The fluorescent lamps are driven by an unmodulated sine-wave current generated from an LC parallel resonant power converter which operates above the resonant frequency to perform ZVS. Theoretical analysis and experimental results are presented for two series-connected 40 W fluorescent lamps operating from 127 V -15% to +10% 60 Hz utility line. The switching frequency is changed from 25 to 45 kHz to maintain the DC-link voltage regulated at 410 V, which leads to a constant output power. The experimental results confirm the high efficiency and HPF of this electronic ballast  相似文献   

15.
A single stage electronic ballast with high power factor (HPF) is proposed in this letter. The single-phase boost-type rectifier provides HPF. A saturable transformer constituting the self-oscillating drive limits the lamp current and dominates the switching frequency of the ballast. Experimental results obtained on a 40 W fluorescent lamp are discussed  相似文献   

16.
王卫  张伟强  高国安 《电子器件》2002,25(3):224-228
本文针对高压钠灯电子镇流器设计中,开关损耗大、驱动复杂、启动速度慢等问题,提出一种高性能高压钠灯用电子镇流器电路。该电路成功的应用了L6560校正芯片和IR2155专用半桥驱动芯片,即简化了传统的驱动电路,又实现了变频调节,提高了启动速度,保证了灯功率的稳定。通过频率和辅助元件的设置,半桥逆变电路可工作在软开关状态。同时设计出可靠的、能产生3.5kV电压的启动电路,保证灯在热灯熄灭时,切断触发脉冲,而后自动恢复启动状态。实验结果表明该镇流器性能优良,功率因数大于0.99,启动时间小于2.4min。  相似文献   

17.
A single-stage line-coupled half-bridge ballast with unity power factor and ripple-free input current using a coupled inductor is proposed. The proposed power-factor-correction circuit can achieve unity power factor and ripple-free input current using a coupled inductor. A saturable transformer constituting the self-oscillating drive limits the lamp current and dominates the switching frequency of the ballast. The proposed ballast has high energy efficiency, low cost, and high reliability compared to the conventional high-power-factor electronic ballasts. Experimental results obtained on a 30-W fluorescent lamp is discussed.  相似文献   

18.
Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.  相似文献   

19.
To avoid the acoustic resonance on operating metal halide lamps, an autofrequency-searching method is implemented on the high-frequency electronic ballast. The proposed method allows the use of a high-frequency electronic ballast, making the ballast able to adjust the operating frequency automatically as soon as the acoustic resonance is detected and, consequently, to locate it at a stable frequency. The electronic ballast achieves a high efficiency and a high power density through the employment of a high-frequency resonant inverter with an embedded buck-boost converter for power-factor correction and lamp power regulation. The control strategy is realized by a microprocessor along with the acoustic-resonance detection circuit. The operation of autofrequency searching is illustrated by the experiments on an electronic ballast designed for 70-W metal halide lamps.   相似文献   

20.
An electronic ballast for high-pressure sodium (HPS) lamps was designed and evaluated, theoretically and experimentally. The ballast is based on the half-bridge topology and includes a high-voltage ignitor and dimming capability. It was used to drive and examine the high frequency characteristics of a commercial HPS lamp (NAV-T 150 W (SON-T), OSRAM). The experimental results reveal that, for the frequency range of this study (27-75 kHz), the lamp is free of the acoustic resonance problem. It was also found that, for the present experimental conditions, the lamp is purely resistive, and the resistance is practically independent of the power level and operating frequency. The lamp exhibited stable operation over a very large dimming range, down to about 7% of nominal power. The 2.8-kV ignition pulse was found to be sufficient for both cold and hot startup under the proposed operating conditions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号