首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
反复分批发酵法生产甘油研究   总被引:3,自引:0,他引:3  
研究了反复分批发酵法在耐高渗酵母生产甘油中的应用 ,通过对比可知 ,游离耐高渗酵母的反复分批发酵性能优于固定化耐高渗酵母的反复分批发酵 ,且在反复分批发酵 1 2个批次后 ,其发酵性能依然稳定。由对游离细胞反复分批发酵的动力学参数分析可知 ,反复分批发酵法之所以具有良好的发酵性能 ,主要是由发酵液中高的菌体密度决定的。  相似文献   

2.
谢涛  方慧英  诸葛斌  诸葛健 《化工学报》2009,60(6):1529-1533
研究了合成培养基和复合培养基中产甘油假丝酵母反复分批发酵法生产甘油。结果表明,当产甘油假丝酵母细胞在贫磷合成培养基、贫磷复合培养基和补充微量元素的贫磷复合培养基中分别回用13次、9次和14次时,甘油平均产量(或平均得率)的增量均超过15.0%,而甘油平均产率的增加达到37.0%以上。因此限制反复分批发酵培养基中磷含量有利于增强产甘油假丝酵母细胞合成甘油的能力。产甘油假丝酵母细胞在贫磷复合培养基中的回用次数少于贫磷合成培养基中的回用次数,其原因是贫磷合成培养基仅限制了磷源的用量,而贫磷复合培养基除限磷外,微量元素缺乏使菌体生长和甘油生产能力受到影响,回用次数减少。与传统分批发酵相比,产甘油假丝酵母反复分批发酵具有发酵周期短、不需反复培养种子、节省原料成本、形成副产物少以及节约能源动力消耗等优点,可以实现甘油高产量、高得率和高产率的相对统一,且易于放大到工业化生产水平。  相似文献   

3.
刘永强  刘德华  马志国  苏琼 《化工学报》2002,53(11):1139-1142
对游离耐高渗酵母细胞反复分批发酵生产甘油的影响因素进行研究 ,结果表明 :反复分批发酵过程中所需的最优玉米浆浓度低于普通的分批发醇 ;较好的菌体反复利用时机确定为发酵液中残糖降至约 1% ,即细胞活性为 60 %时 ;在菌体的反复利用过程中残留在菌体中的代谢产物的累积会对甘油发酵产生抑制作用 ,每次菌体利用之前用无菌水洗涤菌体一遍可消除抑制.  相似文献   

4.
分批发酵及补料分批发酵工艺生产马杜霉素的研究   总被引:1,自引:0,他引:1  
以马杜霉拉放线菌(Actinomadura yumanense ZU-M3)为生产菌株,在3.7 L发酵罐中对分批发酵和补料分批发酵工艺进行了研究.结果表明,良好的溶氧度是提高马杜霉素发酵水平的重要因素,在分批发酵工艺中,适宜的通气量和搅拌速度分别为0.15 m3·h-1和500 r·min-1,192 h后马杜霉素发酵单位达7984 μg·mL-1.采用分段控制搅拌速度的发酵工艺(0~60 h为300 r·min-1,60~120 h为500 r·min-1,120~192 h为600 r·min-1),更有利于菌体生长和产物生成,马杜霉素发酵单位比固定转速时提高了7.9%.在间歇补料分批发酵工艺中,分10次补加培养基,使碳、氮源的总浓度与分批发酵相同,马杜霉素发酵单位提高到9645 μg·mL-1,比分批发酵提高了15.7%;在连续补料分批发酵工艺中,马杜霉素发酵单位可达10328 μg·mL-1,比间歇补料分批发酵提高了6.0%,比分批发酵提高了29.4%.该研究结果对于抗球虫药物大规模工业化生产具有一定的指导意义.  相似文献   

5.
研究了产甘油假丝酵母细胞回用生产甘油的反复分批发酵。实验结果表明:第一级发酵培养基KH2PO4浓度为0.4 g·L-1,回用培养基的最适KH2PO4浓度为0.1 g·L-1,当上一批次发酵液中葡萄糖浓度降至10 g·L-1以下时,酵母细胞不经洗涤即可回用;经过15个批次的反复分批发酵过程,甘油的平均产量、平均得率和平均生产能力分别达到138.69 g·L-1、60.17%和2.31 g·L-1·h-1,分别比第一级发酵结果增加了15.74%、15.48%和39.16%;但回用至第15次时,菌体出现严重衰退,因此回用周期以12~14次为宜。  相似文献   

6.
黄平峰 《辽宁化工》1997,26(5):291-293
本文介绍了亚甲基丁二酸的性质、生产工艺、应用及市场前景。  相似文献   

7.
Actinobacillus succinogenes NJ113产丁二酸过程中的底物抑制   总被引:1,自引:0,他引:1  
研究了分批发酵条件下以葡萄糖作为底物对产琥珀酸放线杆菌Actinobacillus succinogene NJ113发酵产丁二酸的影响,针对底物抑制现象,采用变速补料控制发酵罐中葡萄糖浓度的补料分批发酵方式.结果表明,发酵过程中将葡萄糖浓度控制在0~10g/L,以Na2CO3作为pH调节剂,经26h厌氧发酵,消耗60g/L葡萄糖,能积累45.27g/L丁二酸,得率达75.45%,生产强度为1.74g/(L·h),比初始葡萄糖浓度为60g/L的分批发酵周期缩短了18.75%,主产物丁二酸的得率和生产强度分别提高了5.44%和31.82%,副产物甲酸产量有所减少,而乙酸产量有所增加.通过代谢网络中相关酶的酶活分析,解析了补料过程中主副产物的分布.  相似文献   

8.
陈丽 《河南化工》2021,38(4):15-16,20
从工业应用角度介绍了几种不同的丁二酸生产工艺技术,并进行了不同工艺的比较,分析了丁二酸市场现状,对丁二酸发展前景进行展望.  相似文献   

9.
李娜  王秀玲 《天津化工》2010,24(3):28-29
以丁二酸和无水乙醇为原料,硫酸氢钠为催化剂合成丁二酸二乙酯,考察了影响收率的各种因素,确定了最佳反应条件为:丁二酸用量0.1mol时,无水乙醇与戊二酸的物质的量比为6.0,3.0g催化剂,25mL环己烷作带水剂,反应时间2.0h,收率达85.09%,结果表明,硫酸氢钠是合成丁二酸二乙酯的优良催化剂。  相似文献   

10.
在摇瓶和50 L发酵罐中研究了溶氧(DO)对吉他霉素分批发酵的影响。结果表明,当250 m L摇瓶装液量为25 m L,转速为240 r/rain条件下发酵生产吉他霉素产量最大,50 L发酵罐中当溶氧浓度控制在60%时,吉他霉素产量达到最高。  相似文献   

11.
采用聚乙烯亚胺(PEI)和戊二醛(GA)对棉纤维进行化学修饰,考察了载体改性后的性能和对固定化大肠杆菌产丁二酸的影响。改性后的载体菌体负载量提高了63.3%。培养基中葡萄糖浓度为43 g/L,添加改性棉纤维120g/L,以MgCO3为缓冲盐,进行批式发酵,丁二酸浓度达到29.6 g/L,比未改性棉纤维提高了11.3%;丁二酸收率达到70.5%,比改性前提高了7.5%;丁二酸生产速率达到0.66 g/(L?h), 比改性前提高了37.5% 。对该材料固载的细胞进行7次重复批式发酵,丁二酸产量、转化率和产率没有下降趋势,具有一定的重复稳定性。  相似文献   

12.
A novel repeated batch operation mode was proposed for ethanol fermentation, where the fermenter beer was periodically exchanged between the fermenter with biomass recycle and the distillation unit, to promote the selective removal of ethanol. Using the mathematical model developed, as based on the experimental results, the optimal operation of the proposed method was shown to attain high performance, with a productivity of about 12 g dm−3 h−1 and a product concentration of 400 g dm−3.  相似文献   

13.
BACKGROUND: Succinic acid is an important precursor of numerous products, including pharmaceuticals, feed additives, green solvents, and biodegradable polymers. In this work, strategies of pH control and glucose‐fed batch fermentation for producing succinic acid using Actinobacillus succinogenes CGMCC1593 were carefully optimized. RESULTS: The production of succinic acid was stable within the pH range 6.0–7.2. Both cell growth and succinic acid production were inhibited by high concentrations of sodium and calcium ions, while there was no significant inhibition by magnesium ions. With an initial glucose concentration of 25 g L?1, and glucose concentration was maintained between 10 and 15 g L?1 during the course of fed batch fermentation, succinic acid concentration, productivity and yield were 60.2 g L?1, 1.3 g L?1 h?1 and 75.1%, respectively. CONCLUSION: Of all the neutralization reagents used for pH control of A. succinogenes CGMCC1593, solid MgCO3 was the most satisfactory. With increase of initial glucose concentration, the time course showed a longer growth lag period and the maximum biomass declined, while more carbon was diverted to succinate synthesis. The results obtained in this study should be helpful for the design of a highly efficient succinic acid production process. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
15.
对氧化还原电位调控在产琥珀酸放线杆菌厌氧发酵产丁二酸过程中的代谢产物分布的作用进行了研究。在血清瓶发酵培养过程中,筛选出对发酵过程无抑制作用的氧化剂铁氰化钾和还原剂二硫苏糖醇作为发酵体系的氧化还原电位调节剂。在3L发酵罐上利用铁氰化钾和二硫苏糖醇调节发酵体系氧化还原电位值在-100~-450mV,结果表明-350mV为菌体生长和产丁二酸的最佳电位,丁二酸生产速率由0.75g/(L·h)提高到1.18g/(L·h),产物丁二酸与副产物乙酸的质量浓度比由2.5提高到3.9。  相似文献   

16.
BACKGROUND: The aim of this study was to examine the repeated batch production of bioethanol from sludge‐containing cassava mash as starchy substrate by flocculating yeast to improve volumetric bioethanol productivity and to simplify the process of a pre‐culture system. RESULTS: For the repeated batch production of bioethanol using cassava mash, the optimal recycling volume ratio was found to be 5%. The repeated batch fermentation was completed within 36 h, while the batch fermentation was completed after 42 h. Volumetric productivity, final ethanol concentration, and ethanol yield were attained to 2.15 g L?1 h?1, 83.64 g L?1, and 85.15%, respectively. Although cell accumulation in the repeated batch process is difficult due to the cassava mash, the repeated batch process using Saccharomyces cerevisiae CHFY0321 could exhibited 10‐fold higher initial viable cell number (1.7 × 107 CFU mL?1) than that of the batch process. CONCLUSION: The liquefied cassava powder was directly used for the repeated batch process without removal of sludge. Repeated batch bioethanol production by simultaneous saccharification and fermentation using self‐flocculating yeast could reduce process costs and accelerate commercial applications. This result was probably due in part to the effect of the initial viable cell density. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Succinic acid is a valuable four‐carbon organic chemical with applications in many fields. It was found that cell mass was an important factor in succinic acid production by metabolically engineered Escherichia coli strains. In this work, high cell density fermentation was investigated for succinic acid production by a metabolically engineered strain SD121 with ldhA, pflB, ptsG mutation and heterogenous cyanobacterial ppc overexpression. RESULTS: Under two‐stage cultivation, the controlled DO feeding strategy during the aerobic growth phase facilitated biomass up to a dry cell weight of 19.6 g L?1, and enhanced succinic acid production in the following anaerobic fermentation phase to a concentration of 116.2 g L?1. A near theoretical maximum succinic acid yield of 1.73 mol mol?1 glucose was achieved with an average productivity of 1.55 g L?1 h?1. CONCLUSION: The results indicated the potential advantage of high cell density fermentation for improvement of succinic acid production by E. coli. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Repeated batch operation using two fermentors (RBTF) to penicillin fermentation was demonstrated by computer simulation to improve productivity. Three operation modes were compared: chemostat, repeated batch operation using a single fermentor (RBSF) and RBTF; in each case account was made of the lag period before growth. The simulated fermentor performances were assessed on the basis of the penicillin productivity and concentration; the simulation was based on published batch fermentation data. It was shown that RBTF was superior to RBSF and chemostat. The advantage of RBTF increased as the lag period became greater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号