首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
采用改良式UASB反应器与SBR反应器组合对爆破法制浆废液进行了处理,研究结果发现,在厌氧处理段,当水力停留时间为1d时,容积负荷为5.3gCODCr/(L·d),CODCr的去除率可以达到75%,BOD5去除率达95%,平均甲烷产率为247.4ml/gCODCr。组合处理后,废液中BOD5总去除率达98%以上,达到新排放标准,CODCr总去除率为85.3%。  相似文献   

2.
采用两相EGSB处理模拟皮革废水,在40 d的实验运行期间,跟踪观察了COD和硫化物的脱除及pH值的变化以及污泥的生物特性变化,发现EGSB反应器的有机负荷由3.2kg.COD/(m^3.d)逐渐提高到17.41kg COD/(m^3.d),COD的去除率稳定在88%左右,而且进水硫化物也得到了有效的去除,驯化出了对硫化物有较强忍耐力的产甲烷菌.  相似文献   

3.
Cassava stillage is a high strength organic wastewater with high suspended solids (SS) content. The efficiency of cassava stillage treatment using an anaerobic sequencing batch reactor (ASBR) was significantly enhanced by discharging settled sludge to maintain a lower sludge concentration (about 30 g/L) in the reactor. Three hydraulic retention times (HRTs), namely 10 d, 7.5 d, 5 d, were evaluated at this condition. The study demonstrated that at an HRT of 5 d and an organic loading rate (OLR) of 11.3 kg COD/(m3 d), the total chemical oxygen demand (TCOD) and soluble COD (SCOD) removal efficiency can still be maintained at above 80%. The settleability of digested cassava stillage was improved significantly, and thus only a small amount of settled sludge needed to be discharged to maintain the sludge concentration in the reactor. Furthermore, the performance of ASBR operated at low and high sludge concentration (about 79.5 g/L without sludge discharged) was evaluated at an HRT of 5 d. The TCOD removal efficiency and SS in the effluent were 61% and 21.9 g/L respectively at high sludge concentration, while the values were 85.1% and 2.4 g/L at low sludge concentration. Therefore, low sludge concentration is recommended for ASBR treating cassava stillage at an HRT 5 d due to lower TCOD and SS in the effluent, which could facilitate post-treatment.  相似文献   

4.
酸析黑液厌氧生物处理效果研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用上流式厌氧污泥床(UASB)反应器对酸析黑液进行处理,分析了酸析黑液的厌氧可生化性(BD),重点研究了不同COD容积负荷和硫酸盐容积负荷下,反应器对COD和硫酸盐的去除效果,系统p H值、氧化还原电位(ORP)和甲烷产率的变化,反应器内污泥胞外聚合物(EPS)中蛋白质和多糖含量的变化以及污泥表面Zeta电位的变化,并结合扫描电镜观察酸析黑液厌氧处理前后污泥的形态特征。结果表明,该酸析黑液的厌氧可生化性较好,BD为85.07%。反应器随着进水COD容积负荷的增加,COD去除率先上升后下降。随着进水硫酸盐容积负荷的增加,硫酸盐去除率逐渐增大。当CODCr容积负荷为2.00 kg/(m3·d)时,CODCr去除率最大值在49%;当硫酸盐容积负荷提高到12.91 kg/(m3·d)时,硫酸盐去除率上升至42%左右。系统p H值随着COD容积负荷的增加而降低,ORP随着COD容积负荷的增加而降低,最后稳定在-430 m V左右,产甲烷速率随着COD容积负荷的增加先升高后降低,最大值为0.225 L/d。进水COD容积负荷的提高使得EPS中蛋白质和多糖含量升高,污泥表面Zeta电位降低,颗粒污泥表层变得紧密厚实。  相似文献   

5.
Lab-scale single-phase and two-phase thermophilic methane fermentation systems (SPS and TPS, respectively) were operated and fed with artificial kitchen waste. In both SPS and TPS, the highest methane recovery ratio of 90%, in terms of chemical oxygen demand by dichromate (CODcr), was observed at an organic loading rate (OLR) of 15 gCODcr/(l.d). The ratio of particle CODcr remaining to total CODcr in the influent was 0.1 and the ratio of NH(4)-N concentration to the input total nitrogen concentration was 0.5 in both SPS and TPS. However, the propionate concentration in the SPS reactor fluctuated largely and was 2 gCODcr/l higher than that in TPS, indicating less stable digestion. Regardless, efficient kitchen waste degradation can be accomplished in both SPS and TPS at an OLR of <20 gCODcr/(l.d), even though TPS may be more stable and easier to maintain. Bacillus coagulans predominated with an occupied ratio of approximately 90% in the acid fermentation reactor of TPS, and then a richer microbial community with a higher Shannon index value was maintained in the methane fermentation reactor of TPS than in the SPS reactor.  相似文献   

6.
化学法制浆废水的厌氧可生化性研究   总被引:1,自引:1,他引:0  
以海南某纸业有限公司化学法制浆废水为处理对象,采用颗粒污泥接种MIC反应器,对其厌氧可生化性进行研究。经过2个月左右的现场中试运行实验研究:在进水CODC,为600~1800mg/L的情况下,容积负荷提升到15kgCOD/(m^3&#183;d)左右,水力停留时间缩短至4h,有机污染物的去除率保持在40%~50%的范围内,运行稳定。  相似文献   

7.
Growth of phototrophic bacteria was induced from granules in a lighted upflow anaerobic sludge blanket (LUASB) reactor supplied with an organic-acid-based medium containing 141.7 mg S.l(-1) of SO4(2-) under light conditions (100 microE.m(-2).s(-1)). We investigated the population dynamics of phototrophic bacteria in the LUASB reactor and the performance of the LUASB reactor for wastewater treatment and poly-beta-hydroxybutyrate (PHB) production under anaerobic light and sulfate-rich conditions. In vivo absorption spectra and a colony count suggested that populations of Rhodopseudomonas palustris and Blastochloris sulfoviridis in the LUASB reactor supplied with a medium containing 574.4 mg S.l(-1) of SO4(2-) under light conditions were lower than those supplied with a medium containing 1.0 or 141.7 mg S.l(-1) of SO4(2-) under parallel conditions. Removal efficiencies of ammonium and phosphate in the LUASB reactor supplied with the medium containing 141.7 mg S.l(-1) of SO4(2-) under light conditions were higher than those under parallel conditions but without illumination. The difference in the results of runs under light or dark conditions suggested that the ammonium and phosphate ion removal efficiencies were improved by increasing the amount of phototrophic bacterial biomass in the LUASB reactor under sulfate-rich conditions. The average PHB production rates of the bacterial cells recovered from the effluent of the LUASB reactor supplied with a medium containing 141.7, 283.5 or 574.4 mg S.l(-1) of SO4(2-) were 1.0-2.9 mg.l(-1)-reactor.d(-1) and the average PHB content based on the dry bacterial biomass was 1.4-3.6%.  相似文献   

8.
Gasification of biomass produces a mixture of gas (mainly carbon monoxide (CO), carbon dioxide (CO(2)), and hydrogen (H(2))) called synthesis gas, or syngas, by thermal degradation without combustion. Syngas can be used for heat or electricity production by thermochemical processes. This project aims at developing an alternative way to bioupgrade syngas into biogas (mainly methane), via anaerobic fermentation. Nonacclimated industrial granular sludge to be used as reactor inoculum was initially evaluated for mesophilic carboxydotrophic methanogenesis potential in batch tests at 4 and 8 mmol CO/g VSS.d, in the absence and presence of H(2) and CO(2), respectively. Granular sludge was then introduced into a 30 L gas-lift reactor and supplied with CO, to study the production of methane and other metabolites, at different gas dilutions as well as feeding and recirculation rates. A maximal CO conversion efficiency of 75%, which was gas-liquid mass transfer limited, occurred at a CO partial pressure of 0.6 atm combined with a gas recirculation ratio of 20:1. The anaerobic granule potential for methanogenesis from CO was likely hydrogenotrophic, combined with CO-dependent H(2) formation, either under mesophilic or thermophilic conditions. Thermophilic conditions provide the anaerobic granules with a CO-bioconversion potential significantly larger (5-fold) than under mesophilic conditions, so long as the gas-liquid transfer is alleviated.  相似文献   

9.
In the literature the production of methane from waste activated sludge (WAS) was usually conducted in a continuous stirred tank reactor (CSTR) after sludge was pretreated. It was reported in our previous publication that compared with other pretreatment methods the methane production in CSTR could be significantly enhanced when sludge was pretreated by NaOH at pH 10 for 8 days. In order to further improve methane production, this study reported a new process for efficiently producing methane from sludge, that is, sludge was fermented at pH 10 for 8 days, which was adjusted by Ca(OH)(2), and then the fermentation liquid was treated in an expanded granular sludge bed (EGSB) for methane generation. First, for comparing the methane production observed in this study with that reported in the literature, the conventional operational model was applied to produce methane from the pH 10 pretreated sludge, that is, directly using the pH 10 pretreated sludge to produce methane in a CSTR. It was observed that the maximal methane production was only 0.61 m(3)CH(4)/m(3)-reactor/day. Then, the use of fermentation liquid of pH 10 pretreated sludge to produce methane in the reactors of up-flow anaerobic sludge bed (UASB), anaerobic sequencing batch reactor (ASBR) and EGSB was compared. The maximal methane production in UASB, ASBR, and EGSB reached 1.41, 3.01, and 12.43 m(3)CH(4)/m(3)-reactor/day, respectively. Finally, the mechanisms for EGSB exhibiting remarkably higher methane production were investigated by enzyme, adenosine-triphosphate (ATP), scanning electron microscope (SEM) and fluorescence in situ hybridization (FISH) analyses. It was found that the granular sludge in EGSB had the highest conversion efficiency of acetic acid to methane, and the greatest activity of hydrolysis and acidification enzymes and general physiology with much more Methanosarcinaceae.  相似文献   

10.
In the production of volatile fatty acids (VFAs) from citrus waste, organic loadings rates (OLR) from 1 to 8 g VS/L·d were applied in semi-continuous anaerobic fermentation using a tubular membrane bioreactor (MBR). Filtration fluxes of the membrane were in the range of 7.9–8.5 L/m2·h. trans-Membrane pressure (TMP) revolved around 24.1–67.5 mbar. No obvious fouling and clogging occurred. The highest yield of VFAs 0.67 g VFA/g VS (volatile solids) was achieved at OLR 4 g VS/L·d. When citrus waste was pretreated to remove d-limonene using an airlift reactor, the highest yield of VFAs 0.84 g VFA/g VS was also obtained at OLR 4 g VS/L·d. A further increase in OLR of up to 8 g VS/L·d caused a sharp decrease in yield for the untreated citrus waste and only marginal changes were observed for the pretreated citrus waste. The main composition of VFAs was acetate, butyrate, caproate, and propionate.  相似文献   

11.
Four methanol-utilizing yeasts, Candida boidinii, Hansenula polymorpha, Hansenula ofunaensis, and Pichia pinus, produced polyols from corresponding sugars in a methanol medium. H. polymorpha produced larger amounts of xylitol than the other yeasts. Productivity was the highest at pH 8 when 5 g (dry)/l cultured cells were incubated with 2.5 g/l urea as the nitrogen source in a medium containing 1% (v/v) methanol and 1 g/l MgSO4.7H2O. Under these conditions, 57 g/l xylitol was obtained from 110 g/l D-xylose after 3 d of cultivation. The largest amount of xylitol (58 g/l; yield, 0.62 g/g) was produced from 125 g/l, D-xylose and 5% (w/v) glycerol instead of methanol after 4 d of cultivation.  相似文献   

12.
Autogenerative high pressure digestion (AHPD) is a novel configuration of anaerobic digestion, in which micro-organisms produce autogenerated biogas pressures up to 90 bar with >90% CH(4)-content in a single step reactor. (1) The less than 10% CO(2)-content was postulated to be resulting from proportionally more CO(2) dissolution relative to CH(4) at increasing pressure. However, at 90 bar of total pressure Henry's law also predicts dissolution of 81% of produced CH(4). Therefore, in the present research we studied whether CO(2) can be selectively retained in solution at moderately high pressures up to 20 bar, aiming to produce high-calorific biogas with >90% methane. Experiments were performed in an 8 L closed fed-batch pressure digester fed with acetate as the substrate. Experimental results confirmed CH(4) distribution over gas and liquid phase according to Henry's law, but the CO(2)-content of the biogas was only 1-2%, at pH 7, that is, much lower than expected. By varying the ratio between acid neutralizing capacity (ANC) and total inorganic carbon (TIC(produced)) of the substrate between 0 and 1, the biogas CO(2)-content could be controlled independently of pressure. However, by decreasing the ANC relative to the TIC(produced) CO(2) accumulation in the aqueous medium caused acidification to pH 5, but remarkably, acetic acid was still converted into CH(4) at a rate comparable to neutral conditions.  相似文献   

13.
We investigated the performance of a lighted upflow anaerobic sludge blanket (LUASB) reactor for wastewater treatment and poly-beta-hydroxybutyrate (PHB) production. Phototrophic bacteria were induced from UASB (upflow anaerobic sludge blanket) granules under light conditions (100 microE.m(-2).s(-1)). The ammonium and phosphate ion removal efficiencies of the LUASB reactor were higher than those of the UASB reactor. The difference in the results from runs under light and dark conditions suggested that the ammonium and phosphate ion removal efficiencies were improved by increasing the amount of phototrophic bacteria in the LUASB reactor. The average production rate of PHB from the biomass in the effluent from the LUASB reactor was 6.6-14.0 mg.l(-1)-reactor.d(-1) using acetate-based media and the average PHB content based on the dry bacterial biomass was 15.1-25.3%. The PHB concentration increased by reincubation of the effluent from the LUASB reactor with sodium acetate under light conditions. The UASB granular sludge can decompose a variety of organic substances and in addition the LUASB method can remove ammonium and phosphate ions. The LUASB method thus appears to be appropriate for wastewater treatment and production of phototrophic bacteria and PHB from various wastewaters.  相似文献   

14.
采用连续流CSTR-UASB两相厌氧反应装置,CSTR以人工配制的红糖水作为发酵底物,其液相末端产物作为UASB的反应底物,污水处理厂剩余污泥作为反应器的启动污泥,反应器实现稳定运行(CSTR为乙醇型发酵)后,在其它参数不变的情况下,通过改变有机负荷,研究其对CSTR-UASB两相厌氧系统的影响.有机负荷从12 kg/(m^3·d)提升至32 kg/(m^3·d)的过程分为六个阶段,结果表明厌氧活性污泥产氢能力持续升高,在有机负荷为32 kg/(m^3·d)时,最大产氢量为12.8L/d,较初始有机负荷12 kg/(m^3·d)时提高了71.9%;产甲烷量随有机负荷的升高先增大后减小,在有机负荷为24 kg/(m^3·d)时,最大产甲烷量为18.5L/d;当有机负荷提高至28 kg/(m^3·d)时,总COD去除率达最大值72%.因此,CSTR-UASB两相厌氧系统对红糖废水具有较好的降解效果,同时能源回收效率较高.  相似文献   

15.
The factors that change the microbial distribution and consequently the flotation of brewery granules were investigated using laboratory-scale upflow anaerobic sludge blanket (UASB) reactors and the fluorescence in situ hybridization (FISH) method. The startup operations of laboratory-scale UASB reactors fed with acetate-based synthetic wastewater, in which the loading rate was maintained at 0.1 gCOD/gVSS/d (Run 1) and increased in a stepwise manner from 0.1 gCOD/gVSS/d to 1.0 gCOD/gVSS/d (Run 2), generated methanogen colonies near the granule surface, while the overloading operation at 1.0 gCOD/gVSS/d from the startup (Run 3) resulted in the formation of methanogen colonies deep in the granules. In each run, a proportion of the granules floated when overloaded at 2.0 gCOD/gVSS/d and circulation was stopped. The ratio of floating granules increased as the methanogen-growing region increased. On the other hand, the Bacteria layer on the granule surface, which is also considered as a possible cause of granule flotation, was not formed by the inflow of other organic acids such as propionate and lactate. Glucose caused formation of a 5-microm-thick surface Bacteria layer, but the granules were still resistant to flotation. Interfusing of air under glucose feeding caused the formation of a Bacteria layer over 50 microm thick leading to granule flotation.  相似文献   

16.
A procedure for start-up of oxygen-limited autotrophic nitrification-denitrification (OLAND) in a lab-scale rotating biological contactor (RBC) is presented. In this one-step process, NH4+ is directly converted to N2 without the need for an organic carbon source. The approach is based on a sequential addition of two types of easily available biocatalyst to the reactor during start-up: aerobic nitrifying and anaerobic, granular methanogenic sludge. The first is added as a source of aerobic ammonia-oxidizing bacteria (AAOB), the second as a possible source of planctomycetes including anaerobic ammonia-oxidizing bacteria (AnAOB). The initial nitrifying biofilm serves as a matrix for anaerobic cell incorporation. By subsequently imposing oxygen limitation, one can create an optimal environment for autotrophic N removal. In this way, N removal of about 250 mg of N L(-1) d(-1) was achieved after 100 d treating a synthetic NH4+-rich wastewater. By gradually imposing higher loads on the reactor, the N elimination could be increased to about 1.8 g of N L(-1) d(-1) at 250 d. The resulting microbial community was compared with that of the inocula using general bacterial and AAOB- and planctomycete-specific PCR primers. Subsequently, the RBC reactor was shown to treat a sludge digestor effluent under suboptimal and strongly varying conditions. The RBC biocatalyst was also submitted to complete absence of oxygen in a fixed-film bioreactor (FFBR) and proved able to remove NH4+ with NO2- as electron acceptor (maximal 434 mg of NH4+-N (g of VSS)(-1) d(-1) on day 136). DGGE and real-time PCR analysis demonstrated that the RBC biofilm was dominated by members of the genus Nitrosomonas and close relatives of Kuenenia stuttgartiensis, a known AnAOB. The latter was enriched during FFBR operation, but AAOB were still present and the ratio planctomycetes/AAOB rRNA gene copies was about 4.3 after 136 d of reactor operation. Whether this relates to an active role of AAOB in the anoxic N removal process remains to be solved.  相似文献   

17.
采用红糖废水为启动和连续运行阶段的底物,使用EGSB反应器进行连续发酵生物制氢,通过控制OLR使系统形成了稳定的乙醇型发酵。在容积负荷为97.2kgCOD/m^3·d条件下,水力停留时间为2h,得到最大5.73L/L·d的氢气产率和氢气含量平均为41.27%。  相似文献   

18.
A swim-bed reactor using the biofringe acryl-fiber biomass carrier was used for partial nitritation treatment for anaerobic digestion liquor of swine wastewater. The sludge in the reactor demonstrated excellent settling properties, and the sludge volumetric index (SVI) was always about 50 ml g(-1). The mixed liquor suspended solids (MLSS) concentration was maintained above 10,000 mg l(-1) with a maximum of 16,800 mg l(-1). Satisfactory and stable partial nitritation was obtained at a nitrogen loading rate (NLR) of 1.9 kg-N m(-3) d(-1) without any operational control. Only a little nitrate was produced almost during the whole operational period and the nitrite to total oxidized nitrogen ratio (NO(2)-N/(NO(2)-N+NO(3)-N)) was always above 95%. In addition, the influence of temperature on partial nitritation efficiencies was also investigated and non-controlled efficiencies were maintained stably between 15 degrees C and 30 degrees C at an NLR of 1.9 kg-N m(-3) d(-1), but suddenly deteriorated when the temperature fell below 15 degrees C. Nitrite oxidizing bacteria were inhibited by free ammonia and free nitric acid, which prevented the conversion of nitrite to nitrate and the inhibition due to free nitric acid weaken with a decrease in temperature. It was apparent that these phenomena were crucial to the control of partial nitritation treatment.  相似文献   

19.
A modified three-stage methane fermentation system was developed to digest food waste efficiently. This system consisted of three stages: semianaerobic hydrolysis, anaerobic acidogenesis and strictly anaerobic methanogenesis. In this study, we examined the effects of temperature and hydraulic retention time (HRT) on the methanogenesis. Operation temperature was adjusted from 30 degrees C to 55 degrees C, and the HRTs ranged from 8 to 12 d. The rate of soluble chemical oxygen demand (sCOD) removal correlated with digestion time according to the first-order kinetic model developed by Grau et al. [Water Res., 9, 637-642 (1975)]. With liquor food waste, thermophilic digesters showed a higher rate of sCOD removal than mesophilic digesters. The rates of biogas and methane production by thermophilic digesters were higher than those by mesophilic digesters regardless of HRT. Although maximum biogas production occurred when an HRT of 10 d was used, the methane yield was the highest in the reactor when an HRT of 12 d was used (223 l CH4/kg sCODdegraded). However, digestion stability decreased when an HRT of 8 d was used. The concentration of NH3-N generated in this experiment did not inhibit anaerobic digestion.  相似文献   

20.
Nitrate removal from soft groundwater using ethanol as a carbon source in an upflow sludge-blanket reactor containing denitrifying granular sludge was investigated. At a hydraulic retention time of 0.83 h, influent nitrate was increased stepwise from 20 to 145 mg N/l (volumetric loading rates (VLRs), 0.60 to 4.2 g N/l/d, respectively) and sludge was periodically wasted to maintain a sludge bed of about 2 3 the liquid volume. Complete nitrate removal was achieved at influent nitrate concentrations up to 75 mg N/l(2.1 g N/l/d). MLSS increased from 20 g/l at a VLR of 0.6 g N/l/d to 51 g/l at a VLR of 1.9 g N/l/d, above which it decreased. VSS increased from 11 g/l to a maximum of 25 g/l at a VLR of 2.1 g N/l/d. Settling velocities showed the same trend with maximum values in a VLR range of 1.5 to 2.1 g N/l/d. However, granule size, calcium and magnesium contents of the granular sludge and protein, carbohydrate and nucleic acid contents of extracellular polymers decreased steadily with an increase in VLR throughout the range of testing. Within the VLR range of 0.6 to 2.1 g N/l/d, corresponding to complete nitrate removal and efficient sludge retention, the granular sludge had a high calcium content of 24 to 22%, magnesium ranged from only 0.7 to 0.1%, proteins from 3.2 to 1.3%, carbohydrates from 4.2 to 1.4%, and nucleic acids from 0.34 to 0.05% of the sludge dry weight. These results suggest an optimum operational VLR in terms of nitrate removal and sludge retention of about 2 g N/l/d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号