首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为了确定挤压态Mg-5Sn-2Si-2Sr合金合适的热处理方案,分别采用硬度计、X射线衍射仪、力学性能试验机、光学显微镜,研究了该合金经T4(固溶处理)、T5(200℃×12 h时效)和T6(固溶+时效)热处理后显微组织及力学性能的变化。结果表明:挤压态Mg-5Sn-2Si-2Sr合金宜采用T5热处理工艺。经T5热处理后,在晶界处析出大量Mg2Si强化相,使合金的屈服强度、抗拉强度分别达210.9 MPa、257.0 MPa,高于挤压态、T4和T6热处理工艺下的合金强度。T4热处理时,固溶强化作用远小于退火软化作用,致使合金力学性能的下降。T6热处理时,析出相及晶粒尺寸的长大使得合金力学性能的提高受到了限制。  相似文献   

2.
采用硬度检测、拉伸力学性能测试、金相、扫描及透射电镜观察等方法,研究了挤压态Mg-12Gd-3Y-0.6Zr合金经T4、T5和T6热处理后显微组织及力学性能的变化.结果表明:挤压态合金宜采用T5热处理.经T5热处理后,合金的屈服强度、抗拉强度分别达到372、403 MPa,远高于T4、T6处理的,其原因在于T5热处理后合金中存在大量棱镜片状第二相.T6热处理时,虽然合金的时效强化效果优于T5态合金,但晶粒长大严重降低了合金的力学性能.  相似文献   

3.
研究不同状态WE93合金的组织与室温力学性能,以及时效态合金在温度200°C,应力100、125和150MPa条件下的蠕变性能。结果表明:WE93合金铸态组织由α-Mg、Mg12(MM)及Mg24Y5相组成,其平均晶粒尺寸为45μm。铸态合金经535°C保温18h均匀化处理后,Mg24Y5相基本完全分解,晶界周围仅残留MM相,晶粒尺寸随着保温时间的延长未见明显长大。挤压态合金较铸态合金具有更好的力学性能,尤其是其延伸率达到12.5%。经过时效处理的挤压态合金的屈服强度及断裂强度最高,分别为315和385MPa,但延伸率降至6.5%。经时效处理后的挤压态合金在200°C,应力100150MPa条件下具有较好的抗蠕变性能,应力指数为2.97,说明在相应的温度及应力条件下晶界滑移为该合金的主要蠕变机制。  相似文献   

4.
研究Al-5.0Mg-3.0Zn-1.0Cu合金挤压铸造态、固溶态和时效态显微组织及力学性能随截面深度的变化规律。对于挤压铸造态合金,从表层到心部,α(Al)的晶粒尺寸和T-Mg_(32)(AlZnCu)_(49)相的宽度显著增加,而T-Mg_(32)(AlZnCu)_(49)相的体积分数显著下降,这些变化导致挤压铸造态合金抗拉强度从243.7 MPa降低到217.9 MPa,伸长率从2.3%降低到1.4%。在470°C下固溶处理36 h后,大部分第二相溶解于α(Al)基体中,并且表面和心部的晶粒尺寸均较挤压铸造态的增大,从表层到心部,合金的伸长率从18.6%降低到13.9%,抗拉强度从387.8 MPa降低到348.9 MPa。在120°C下进一步时效24 h后,在基体中析出G.P. II区和η'相,合金表层和心部的抗拉强度分别增加到449.5 MPa和421.4 MPa,而伸长率则降至12.5%和8.1%。  相似文献   

5.
对一种新型生物医用镁合金Mg-3Zn-1Y-0.6Zr-0.5Ca分别在270,300和330°C下进行铸造和挤出实验。通过拉伸试验、光学显微镜、扫描电子显微镜、能量色散光谱、X射线衍射技术、透射电子显微镜和电子背散射衍射研究铸态和不同挤出参数下挤压态合金的显微组织和力学性能。结果表明,270°C挤压态合金具有最佳的综合力学性能,其极限拉伸强度和伸长率分别达到315MPa和26%,这与晶粒细化、较弱的基底织构和第二相强化有关。经热挤压后,Mg-3Zn-1Y-0.6Zr-0.5Ca合金出现大量动态再结晶。连续的Mg_3YZn_6相带逐渐分裂成不连续的链状或点状结构,且晶粒分布更均匀。挤压态Mg-3Zn-1Y-0.6Zr-0.5Ca合金呈(0001)基面平行于挤出方向的弱织构特征。  相似文献   

6.
以粉末冶金法制备了具有屏蔽效能的铝基复合材料,分别以10∶1、15∶1和25∶1挤压比热挤压,并将挤压后的材料进行固溶强化和时效处理.通过对挤压态和T4态(WC+ B4C)p/6063Al复合材料拉伸性能的比较以及SEM、TEM分析,研究了该复合材料的力学性能.结果表明:以15:1挤压比进行热挤压,在520~530℃下固溶强化和时效处理时,该复合材料的力学性能最佳,抗拉强度大于300MPa且伸长率达10%以上;热处理后基体中Mg2Si析出相尺寸和形貌上的变化以及增强颗粒的弥散强化是该复合材料力学性能提升的原因.  相似文献   

7.
利用630T挤压机对ZK60镁合金棒材挤压工艺进行试验研究。设计了分流环形通道焊合挤压(ACPP)模具。通过对坯料、ACPP挤压态和ACPP挤压态+人工时效热处理三种状态下的性能进行了测试和分析。通过在420 ℃下的ACPP,成功地挤出了超级细晶ZK60镁合金棒材。试验结果表明,在前期的分流和等通道挤压过程中晶粒已经有一定程度的细化,在进行了焊合完成整个ACPP挤压之后,晶粒细化更为明显。最终晶粒尺寸大多在20~30 μm之间。室温下的挤压态抗拉强度为312 MPa,通过人工时效热处理后的抗拉强度为331MPa,析出强化是抗拉强度高的主要原因;这两个状态对应的硬度分别是59 HV和57 HV。  相似文献   

8.
对热处理的挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能的影响进行了实验性探究。结果显示热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能具有显著影响。挤压态合金主要由非均匀分布的Mg2Sn相组成。经过495℃,10 h固溶处理之后,大部分Mg2Sn相溶入到基体中。时效处理能大幅改善Mg-9Sn-1.5Y-0.4Zr合金的力学性能,最佳时效工艺为:在250℃条件下时效60 h。实验最终力学性能参数为:维氏硬度HV 890 MPa,极限抗拉强度262 MPa,屈服强度218 MPa,延伸率10.4%。基于实验结果分析,可发现对于经时效处理的挤压态Mg-9Sn-1.5Y-0.4Zr合金,沉淀强化是主要的强化因素(~51.76%)。  相似文献   

9.
研究多循环低温交变(液氮浸泡处理)和拉伸温度对挤压态Mg10Gd3Y0.5Zr镁合金的微观组织、力学性能以及断裂机制的影响。结果表明,Mg10Gd3Y0.5Zr合金经10d液氮浸泡或10个周期高低温交变循环后,合金室温力学性能基本不变;而经过20个周期高低温循环后,合金的室温抗拉强度由398MPa升高到417MPa。在196°C下拉伸时,挤压态Mg10Gd3Y0.5Zr镁合金的屈服强度和抗拉强度均大幅度提高,分别为349MPa和506MPa,分别增长了18%和27%。合金室温断裂机制为穿晶解理断裂,而低温条件下为韧性断裂和解理断裂并存的混合断裂机制。  相似文献   

10.
本文对热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能的影响进行了实验性探究。结果显示热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能具有显著影响。挤压态合金主要由非均匀分布的Mg2Sn相组成。经过495℃,10h固溶处理之后,大部分Mg2Sn相溶入到基体中。时效处理能大幅改善Mg-9Sn-1.5Y-0.4Zr合金的力学性能,最佳时效工艺为:在250℃条件下时效60h。实验最终力学性能参数为:维氏硬度89HV,极限抗拉强度262MPa,屈服强度218MPa,延伸率10.4%。基于实验结果分析,可以发现对于经时效处理的挤压态Mg-9Sn-1.5Y-0.4Zr合金,沉淀强化是主要的强化因素(~51.76%)。  相似文献   

11.
Mg-Mn-RE合金挤压和锻造变形后的组织与力学性能   总被引:1,自引:1,他引:0  
对Mg-Mn-RE合金进行挤压和锻造变形处理,研究不同变形方式对其显微组织及力学性能的影响.结果表明:合金挤压变形过程中发生了动态再结晶,晶粒明显细化,挤压变形后硬度、抗拉强度、屈服强度和伸长率相对于铸态都有所提高,分别为68HV、254.9 MPa、190.5 MPa和26%;室温锻造变形后,晶粒扭曲变形,稀土化合物呈弥散均匀分布,硬度相对于挤压变形后有所提高,相对变形量为28%时,合金硬度为101 HV.  相似文献   

12.
研究热处理工艺对砂型铸造Mg-4Y-2Nd-1Gd-0.4Zr镁合金显微组织和力学性能的影响,分析不同热处理条件下合金的断裂机制,获得最佳热处理工艺。结果表明:Mg–4Y–2Nd–1Gd–0.4Zr合金的最佳T4和T6热处理工艺分别为525°C,8 h和(525°C,8 h)+(225°C,16 h)。在最佳T6热处理条件下,Mg-4Y-2Nd-1Gd-0.4Zr合金的硬度、屈服强度、抗拉强度和伸长率分别为HV91、180 MPa、297 MPa和7.4%。此外,不同状态的Mg-4Y-2Nd-1Gd-0.4Zr镁合金也显示出不同的拉伸断裂方式。  相似文献   

13.
采用挤压铸造成形工艺制备7055高强铝合金,研究了热挤压参数对合金力学性能及微观组织的影响,并与铸态下的力学性能及微观组织进行了对比.结果表明,热挤压态下的7055铝合金的微观组织和力学性能均优于铸态,并且晶粒随着比压的增加趋于细化,抗拉强度随着比压的增加趋于提高.当比压为75 MPa时,在730 ℃温度下进行挤压浇注,经过双级固溶处理和时效后,合金的晶粒明显细化,抗拉强度达到681.4 MPa,伸长率达到7.14%.  相似文献   

14.
采用单辊熔体旋转法制备Al-10.7Zn-2.4Mg-0.9Cu合金带材,利用热挤压将带材坯料制成棒材,对其微观组织和力学性能进行研究。结果表明:所制备的带材由过饱和固溶体α(Al)等轴细晶构成,晶粒尺寸为3~5μm;合金经挤压后存在粗大第二相,析出相主要为MgZn2相,挤压态棒材抗拉强度为499.8 MPa,伸长率达到了15.3%,断口呈韧性断裂特征;经T6热处理后,合金中有细小的沉淀相析出,使得室温力学性能得到提高,抗拉强度达到631.9 MPa,伸长率有所降低,断口呈韧脆混合断裂特征。  相似文献   

15.
The microstructure, texture, residual stress, and tensile properties of Mg–6 Zn–2 Y–1 La–0.5 Zr(wt%) magnesium alloy were investigated before and after extrusion process, which performed at 300 °C and 400 °C. The microstructural characterizations indicated that the as-cast alloy was comprised of α-Mg, Mg–Zn, Mg–Zn–La, and Mg–Zn–Y phases. During homogenization at 400 °C for 24 h, most of the secondary phases exhibited partial dissolution. Extrusion process led to a remarkable grain refi nement due to dynamic recrystallization(DRX). The degree of DRX and the DRXed grain size increased with increasing extrusion temperature. The homogenized alloy did not show a preferential crystallographic orientation, whereas the extruded alloys showed strong basal texture. The extrusion process led to a signifi cant improvement on the compressive residual stress and mechanical properties. The alloy extruded at 300 °C exhibited the highest basal texture intensity, the compressive residual stress and hardness, and yield and tensile strengths among the studied alloys.  相似文献   

16.
研究时效时间和时效温度对6005A铝合金显微组织与力学性能的影响,对该铝合金挤压型材进行人工时效实验,时效时间分别为4、8和12h,时效温度分别为150、175和200°C。结果表明:随着时效温度和时间增加,挤压过程形成的粗大Al(Fe,Cr)Si析出相形貌由颗粒状向棒状转变,175°C时亚微米级析出相体积分数最大,200°C时在晶界析出1~3μm左右的AlFeSi相。挤压型材的室温力学性能对时效工艺中的温度参数更加敏感,时效工艺为175°C,4~8h时具有最佳的强度和较稳定的力学性能,抗拉强度与屈服强度分别达到300MPa和270MPa以上。  相似文献   

17.
The hypereutectic Al-Si alloy was fabricated by hot extrusion process after solidified under electromagnetic stirring,and the microstructure and mechanical properties of the alloy were studied.The results show that the ultimate tensile strength and elongation of the alloy reached 229.5 MPa and 4.6%,respectively with the extrusion ratio of 10,and 263.2 MPa and 5.4%,respectively with extrusion ratio of 20.This indicates that the mechanical properties of the alloy are obviously improved with the increase of extrusion ratio.After hot extruded,the primary Si,eutectic Si,Mg2Si,AlNi,Al7Cu4Ni and Al-Si-Mn-Fe-Cr-Mo phases are refined to different extent,and the efficiency of refinement is obvious more and more with the increase of extrusion ratio.After T6 heat treatment,the sharp corners of these phases become passivated and roundish,and the mechanical properties are improved.The ultimate tensile strength of the extruded alloy after T6 heat treatment reaches 335.3 MPa with extrusion ratio of 10 and 353.6 MPa with extrusion ratio of 20.  相似文献   

18.
The influence of Al alloying on the microstructures and the mechanical properties of Mg–x Al–1 Sn–0.3 Mn alloy sheets was investigated. The microstructure of Mg– x Al–1 Sn–0.3 Mn consisted of α-Mg and Mg 17 Al 12 precipitates. Alloying with Al increased the amount of Mg_(17)Al_(12) and the average grain size. Uniaxial tensile tests were carried out along the extrusion direction(ED), the transverse direction(TD) and 45° toward the ED. Mg–5 Al–1 Sn–0.3 Mn alloy sheet exhibited the best combination of mechanical properties along the ED: a yield strength of 142 MPa, an ultimate tensile strength of 282 MPa and an elongation of 23%. The good performance of Mg–5 Al–1 Sn–0.3 Mn sheet was mainly attributed to the large quantity of Mg_(17)Al_(12) precipitates and a weak basal texture. Annealing caused static dynamic recrystallization, refined the grain size and enhanced the mechanical properties: yield strength of 186 MPa, ultimate tensile strength of 304 MPa, elongation of 21% along ED. Both strength and ductility were enhanced by Al alloying.  相似文献   

19.
钼合金熔化焊接存在晶粒粗大、晶间偏析问题,导致接头力学性能差,采用激光束摆动和氮气合金化方法开展试验研究.结果表明,单独采用光束摆动措施后,焊缝区平均晶粒尺寸减小约28%,焊缝中心显微硬度从190?HV提高到200?HV,钼合金对接接头抗拉强度从29.83?MPa提高到130.03?MPa.单独采用氮气合金化(保护气体...  相似文献   

20.
Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(wt%,x=0.2,0.5 and0.8)alloys with single-phase crystal structure were prepared by backward extrusion at 340°C.The addition of Ag element into Mg–3Zn slightly influences the ultimate tensile strength and microstructure,but the elongation firstly increases from12%to 19.8%and then decreases from 19.8%to 9.9%with the increment of Ag concentration.The tensile yield strength,ultimate tensile strength and elongation of Mg–3Zn–0.2Ag alloy reach up to 142,234 MPa and 19.8%,respectively,which are the best mechanical performance of Mg–Zn–Ag alloys in the present work.The extruded Mg–3Zn–0.2Ag alloy also possesses the best corrosion behavior with the corresponding corrosion rate of 3.2 mm/year in immersion test,which could be explained by the single-phase and uniformly distributed grain structure,and the fewer twinning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号