首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Main Roads of Western Australia has a continuing program of bridge upgrading, to refurbish and strengthen bridges to allow for increasing vehicle traffic and increasing axle loads. A 40-year-old, four-span reinforced concrete slab bridge was retrofitted with application of CFRP laminate strips on the top of the deck over the piers, as well as on the deck soffit in the midspan regions, to reduce high moments in both hogging and sagging. The dynamic assessment of the bridge before and after strengthening works provided the opportunity to evaluate the effectiveness of the strengthening intervention through dynamic measurements. A performance evaluation of the repaired structure was carried out through traffic loading application on the updated numerical models of the bridge, before and after retrofit. As a main observation, the addition of CFRP laminate strips led to a significant increase of the structural capacity in flexure. The paper discusses the results obtained from the dynamic-based assessment in terms of effectiveness of the strengthening intervention as well as of efficiency in using such a methodology to evaluate the capacity increase of the retrofitted bridge.  相似文献   

2.
The Land Transport Authority of Singapore has a continuing program of highway bridge upgrading for refurbishing and strengthening bridges to allow for increasing vehicle traffic and increasing axle loads. One subject of this program has been a short-span bridge taking a busy main road across a coastal inlet near a major port facility. Experiment-based structural assessments of the bridge were conducted before and after upgrading works including strengthening. Each assessment exercise comprised three separate components: (1) a strain and acceleration monitoring exercise lasting approximately one month; (2) a full-scale dynamic test carried out in a single day without closing the bridge; and (3) a finite-element model updating exercise to identify structural parameters and mechanisms. This paper presents the dynamic testing and the modal analysis used to identify the vibration properties and the quantification of the effectiveness of the upgrading through the subsequent model updating. Before and after upgrade, similar sets of vibration modes were identified, resembling those of an orthotropic plate with relatively weak transverse bending stiffness. Conversion of bearings from nominal simple supports to nominal full fixity was shown via model updating to be the principal cause of natural frequency increases of up to 50%. The utility of the combined experimental and analytical process in direct identification of structural properties has been proven, and the procedure can be applied to other structures and their capacity assessments.  相似文献   

3.
Acceptance of carbon fiber-reinforced polymer (CFRP) materials for strengthening concrete structures, together with the recent availability of higher modulus CFRP strips, has resulted in the possibility to also strengthen steel structures. Steel bridge girders and building frames may require strengthening due to corrosion induced cross-section losses or changes in use. An experimental study investigating the feasibility of different strengthening approaches was conducted. Large-scale steel-concrete composite beams, typical of bridge structures, were used to consider the effect of CFRP modulus, prestressing of the CFRP strips, and splicing finite lengths of CFRP strips. All of the techniques examined were effective in utilizing the full capacity of the CFRP material, and increasing the elastic stiffness and ultimate strength of the beams. Results of the experimental program were compared to an analytical model that requires only the beam geometry and the constitutive properties of the CFRP, steel, and concrete. This model was used to investigate the importance of several key parameters. Finally, an approach for design is proposed that considers the bilinear behavior of a typical strengthened beam to the elastic-plastic behavior of the same beam before strengthening.  相似文献   

4.
In civil engineering today, only 20 to 30% of the strength of carbon-fiber-reinforced polymer (CFRP) strips is used when they are applied as externally bonded strips for flexural and shear strengthening or in confinement of reinforced concrete (RC) structural elements. The strips are better used when the CFRP material is prestressed. This offers several advantages, including reduced crack widths, reduced deflections, reduced stress in the internal steel, and possibly increased fatigue resistance. In this paper, recent developments in the field of RC strengthening using prestressed CFRP are presented. The paper focuses on developments in flexural and shear strengthening and column confinement made at the Swiss Federal Laboratory for Materials Testing and Research (Empa). Several innovative ideas have been successfully realized in the laboratory. For example, a gradient prestressing technique without end anchorage plates was developed and successfully applied to a 17?m RC bridge girder. A confinement technique using nonlaminated thermoplastic CFRP straps was also investigated and applied to 2?m high RC columns. These results are encouraging, although practical and theoretical problems remain to be solved before these techniques can be fully applied.  相似文献   

5.
Strengthening of a Steel Bridge Girder Using CFRP Plates   总被引:2,自引:0,他引:2  
For bridge owners faced with a rising number of structurally deficient steel bridges, the rehabilitation of steel girders using advanced composite materials offers an attractive solution for short-term retrofit or long-term rehabilitation. Several laboratory studies conducted at the University of Delaware have shown that carbon fiber-reinforced polymer (CFRP) plates can be used to effectively strengthen steel bridge girders. Initial studies focused on several issues including the effect on global stiffness and strength, bond force transfer and development, and environmental and fatigue durability of the CFRP∕steel bond. Once the feasibility of the strengthening procedure had been thoroughly examined, strengthening of an existing steel bridge girder was performed. This paper reviews the research conducted to date, and presents details of a demonstration of this technology performed on a bridge located on Interstate 95 in Newark, Del.  相似文献   

6.
This study presents investigations regarding visual inspection, dynamic testing, and finite-element modeling of an approximately 80-year old reinforced concrete tied-arch railway bridge that is still in service in Turkey. Investigations were conducted as part of a systematic periodic inspection along Ankara-Zonguldak railway line. The bridge is subject to heavy freight trains with increasing axle loads. Field tests such as material tests and dynamic tests were used to calibrate the finite-element model of the bridge. Detailed information regarding testing and model updating procedure is given. Based on test results, computer model was refined. The calibrated model of the bridge structure was then used for structural assessment and evaluation. Despite sufficient overall safety, local details were found to be problematic. Due to insufficient bond length in hanger-to-arch connection, a strengthening scheme using steel channel sections was proposed.  相似文献   

7.
The results obtained when performing a load test to failure of an existing structure are valuable when assessing calculation models, updating finite element models, and investigating the true structural behavior. In this paper a destructive testing and monitoring of a railway bridge in ?rnsk?ldsvik, Sweden is presented. In this particular test the shear capacity of the concrete girders was of primary interest. However, for any reasonable placement of the load (a line load placed transverse to the track direction) a bending failure would occur. This problem was solved by strengthening for flexure using carbon fiber reinforced polymer (CFRP) rectangular rods epoxy bonded in sawed up slots, e.g., near surface mounted reinforcement. The strengthening was very successful and resulted in a desired shear failure when the bridge was loaded to failure. The load-carrying capacity in bending for the unstrengthened and strengthened bridge as well as the shear capacity was predicted with Monte Carlo simulations. The particular calculation presented showed that there was a 25% probability of a bending failure instead of a shear failure. Monitoring showed that the strengthening reduced the strain in the tensile steel reinforcement by approximately 10%, and increased the height of the compressed zone by 100 mm. When the shear failure occurred, the utilization of the compression concrete and CFRP rods were 100 and 87.5%, respectively. This indicates that a bending failure indeed was about to occur, even though the final failure was in shear.  相似文献   

8.
Repair, strengthening, and retrofit of reinforced and prestressed concrete members have become increasingly important issues as the World’s infrastructure deteriorates with time. Buildings and bridges are often in need of repair or strengthening to accommodate larger live loads as traffic and building occupancies change. In addition, inadequate design and detailing for seismic and other severe natural events has resulted in considerable structural damage and loss of life, particularly in reinforced concrete buildings. Numerous buildings and bridges suffer damage during such events and need to be repaired. The use of carbon fiber reinforced polymer (CFRP) composite fabric bonded to the surface of concrete members is comparatively simple, quick and virtually unnoticeable after installation. The use of composites has become routine for increasing both the flexural and shear capacities of reinforced and prestressed concrete beams. Earthquake retrofit of bridge and building structures has relied increasingly on composite wrapping of columns, beams and joints to provide confinement and increase ductility. This paper presents the results of cyclic testing of three large-scale reinforced concrete slab–column connections. Each of the specimens was a half-scale model of an interior slab–column connection common to flat-slab buildings. The specimens were reinforced according to ACI-318 code requirements and included slab shear reinforcement. While supporting a slab gravity load equivalent to dead load plus 30% of the live load, the specimens were subjected to an increasing cyclic lateral loading protocol up to 5% lateral drift. The specimens were subjected to the same loading protocol after they were repaired with epoxy crack sealers and CFRP sheet on the surfaces of the slab. Repair with epoxy and CFRP on the top surface of the slab was able to restore both initial stiffness and ultimate strength of the original specimen.  相似文献   

9.
In this paper, efficiency and effectiveness of carbon fiber-reinforced polymers (CFRP) in upgrading the shear strength and ductility of seismically deficient beam-column joints have been studied. For this purpose, four reinforced concrete interior beam-column sub-assemblages were constructed with nonoptimal design parameters (inadequate joint shear strength with no transverse reinforcement) representing preseismic code design construction practice of joints and encompassing the vast majority of existing beam-column connections. Out of these four, two specimens were used as baseline specimens (control specimens) and the other two were strengthened with CFRP sheets under two different schemes (strengthened specimens). In the first scheme, CFRP sheets were epoxy bonded to the joint, beams, and part of the column regions. In the second scheme, however, sheets were epoxy bonded to the joint region only but they were effectively prevented against any possible debonding through mechanical anchorages. All four subassemblages were subjected to cyclic lateral load histories so as to provide the equivalent of severe earthquake damage. Further, the damaged control specimens were repaired after filling the cracks through epoxy and wrapping them with CFRP sheets under the same two above-mentioned schemes. These repaired specimens were subjected to the similar cyclic lateral load history and their response histories were obtained. Hence, a total of six specimens were tested: two control; two strengthened; and two repaired. Response histories of control, repaired, and strengthened specimens were then compared. The results were compared through hysteretic loops, load-displacement envelopes, column profiles (maximum horizontal displacements of column along its height), joint shear distortion, ductility, and stiffness degradation. The comparison shows that CFRP sheets improve the shear resistance of the joint and increase its ductility. Results of two chosen schemes of strengthening were also compared and the importance of beam upgrading was highlighted.  相似文献   

10.
Many reinforced concrete bridges throughout the United States on county and state highway systems are deteriorated and∕or distressed to such a degree that structural strengthening of the bridge or reducing the allowable truck loading on the bridge by load posting is necessary to extend the service life of the bridge. The structural performance of many of these bridges can be improved through external bonding of fiber-reinforced plastic (FRP) laminates or plates. This paper describes the rehabilitation of an existing concrete bridge in Alabama through external bonding of FRP plates to the bridge girders. Field load tests were conducted before and after application of the FRP plates, and the response of the bridge to test vehicle loadings was recorded. Results of the field tests are reported, and the effects of the FRP plates on the bridge response are identified. The repaired bridge structure exhibited a decrease in steel reinforcing bar stresses and vertical midspan deflections. These decreases ranged from 4 to 12% for various static and dynamic loading cases.  相似文献   

11.
为满足控制臂的轻量化设计需求,提出了一种采用碳纤维复合材料(CFRP)?泡沫铝夹芯结构的汽车悬架控制臂,并对CFRP面板进行结构优化设计。通过泡沫铝准静态压缩试验验证了泡沫铝六面体胞孔模型的准确性,利用CFRP力学性能试验获得了碳纤维复合材料的性能参数,设计一种由CFRP?泡沫铝夹芯结构本体和铝合金连接件组成的悬架控制臂,控制臂本体与连接件之间采用胶?螺混合连接。在此基础上,建立CFRP?泡沫铝夹芯结构控制臂有限元模型,利用多层次优化方法对CFRP面板进行铺层优化。结果表明,相较于钢制控制臂,优化后夹芯结构控制臂的质量减少了26%,同时强度、刚度和模态性能都有所改善。   相似文献   

12.
An innovative approach for damage assessment of a bridge deck is proposed with the measured dynamic response of a vehicle moving on top of a structure. The simply supported bridge deck is modeled as a Euler–Bernoulli beam. The moving vehicle serves as a smart sensor and force transducer in the structural system. The damage is defined as the flexural stiffness reduction in the beam finite element. The identification algorithm is based on dynamic response sensitivity analysis, and it is realized with a regularization technique from the measured vehicle acceleration measurement. Measurement noise, road surface roughness, and model errors are included in the simulations, and the results indicate that the proposed algorithm is computationally stable and efficient, and the identified results are acceptable and not sensitive to the different parameters studied.  相似文献   

13.
This paper deals with the structural evaluation and strengthening of a reinforced concrete bridge over the Arno River in Italy. In 1996 truckload tests and finite-element calculations were performed to assess the bridge condition. The structure was found to be inadequate to bear both the first- and the second-class road loads prescribed by the Italian Bridge Recommendations. The choice of its demolition and reconstruction was rejected, however, since it was too expensive and required a lot of time as well as dramatic inconveniences for the traffic and the road network. So a strengthening design was developed to upgrade the structure to a first-class bridge. The restoration work was performed from September 1999 to September 2000 and dealt with the main structural elements. After the completion of the work, the flexural stiffness was about 20% greater than that in the old structure, and the flexural strength at the midspan of the interior span was 70% greater.  相似文献   

14.
A sound repair on a 40 year old four-span prestressed concrete girder bridge is performed with an innovative strengthening method using prestressed carbon fiber reinforced polymer (CFRP) sheets. In fact, this application is the first North American field application of its type. An adequate repair design is conducted based on the American Association of State Highway and Transportation Officials Load Resistance Factor Design (AASHTO LRFD) and the Canadian Highway Bridge Design Code. To ensure the feasibility of the site application using prestressed CFRP sheets, tests are conducted and closed-form solutions are developed to investigate the behavior of the anchor system that is necessary for prestressing the CFRP sheets. A full-scale finite-element analysis (FEA) is performed to investigate the flexural behavior of the bridge in the undamaged, damaged, and repaired states. The AASHTO LRFD exhibits conservative design properties as compared to the FEA results. The repaired bridge indicates that the flexural strength of the damaged girder has been fully recovered to the undamaged state, and the serviceability has also been improved. An assessment based on the AASHTO rating factor demonstrates the effectiveness of the repair.  相似文献   

15.
An experimental program has been carried out to investigate the structural behavior of RC beams strengthened by carbon-fiber–reinforced polymer (CFRP) sheets and exposed to a corrosive environment. A total of eight specimens (120 × 175 × 2,000 mm) were tested. Six specimens were CFRP strengthened and corroded, one specimen was unstrengthened and corroded, and one specimen was neither strengthened nor corroded. Two different strengthening schemes were applied: (1) wrapping the specimen with CFRP sheets; and (2) both specimen wrapping and flexural strengthening. Three specimens were tested under monotonic loading and five specimens were tested in fatigue. The results showed that the use of CFRP sheets for strengthening RC beams that are experiencing steel reinforcement corrosion is an efficient technique that can maintain the structural integrity and enhance the structural behavior of such beams. The ultimate monotonic strength of the CFRP strengthened-corroded specimens increased to a level between 37 and 87% above the predicted strength of a similar unstrengthened-uncorroded (virgin) specimen. The fatigue life of the CFRP strengthened-corroded specimens was increased within a range of 2.5–6.0 times that of a similar unstrengthened-corroded specimen but was lower than that of the uncorroded (virgin) specimen.  相似文献   

16.
The structural condition assessment of highway bridges is largely based on visual observations described by subjective indices, and it is necessary to develop a methodology for an accurate and reliable condition assessment of aging and damaged structures. This paper presents a method using a systematically validated finite-element model for the quantitative condition assessment of a damaged reinforced concrete bridge deck structure, including damage location and extent, residual stiffness evaluation, and load-carrying capacity assessment. In a trial of the method in a cracked bridge beam, the residual stiffness distribution was determined by model updating, thereby locating the damage in the structure. Furthermore, the damage extent was identified through a defined damage index and the residual load-carrying capacity was estimated.  相似文献   

17.
Shear failure of exterior beam-column joints is identified as the principal cause of collapse of many moment-resisting frame buildings during recent earthquakes. Effective and economical strengthening techniques to upgrade joint shear resistance and ductility in existing structures are needed. In this paper, efficiency and effectiveness of carbon fiber-reinforced polymer (CFRP) sheets in upgrading the shear strength and ductility of seismically deficient exterior beam-column joints have been studied. Four as-built joints were constructed with nonoptimal design parameters (inadequate joint shear strength with no transverse reinforcement) representing preseismic code design construction practice of joints and encompassing most of existing beam-column connections. Out of these four as-built specimens, two specimens were used as baseline specimens (control specimens) and other two were strengthened with CFRP sheets under two different schemes (strengthened specimens). In the first scheme, CFRP sheets were epoxy bonded to joint, beams, and part of the column regions. In the second scheme, however, sheets were epoxy bonded to joint region only but they were effectively prevented against any possible debonding through mechanical anchorages. All of these four subassemblages were subjected to cyclic lateral load histories so as to provide the equivalent of severe earthquake damage. The damaged control specimens were then repaired by filling their cracks through epoxy and externally bonding them with CFRP sheets under the same above two schemes. These repaired specimens were subjected to the similar cyclic lateral load history and their response histories were obtained. Response histories of control, repaired, and strengthened specimens were then compared. The results were compared through hysteretic loops, load-displacement envelopes, column profiles, joint shear distortion, ductility, and stiffness degradation. The comparison shows that CFRP sheets are very effective in improving shear resistance and deformation capacity of the exterior beam-column joints and delaying their stiffness degradation.  相似文献   

18.
Many prestressed concrete bridges are in need of upgrades to increase their posted capacities. The use of carbon fiber-reinforced polymer (CFRP) materials is gaining credibility as a strengthening option for reinforced concrete, yet few studies have been undertaken to determine their effectiveness for strengthening prestressed concrete. The effect of the CFRP strengthening on the induced fatigue stress ratio in the prestressing strand during service loading conditions is not well defined. This paper explores the fatigue behavior of prestressed concrete bridge girders strengthened with CFRP through examining the behavior of seven decommissioned 9.14?m (30?ft) girders strengthened with various CFRP systems including near-surface-mounted bars and strips, and externally bonded strips and sheets. Various levels of strengthening, prestressing configurations, and fatigue loading range are examined. The experimental results are used to provide recommendations on the effectiveness of each strengthening configuration. Test results show that CFRP strengthening can reduce crack widths, crack spacing, and the induced stress ratio in the prestressing strands under service loading conditions. It is recommended to keep the prestressing strand stress ratio under the increased service loading below the value of 5% for straight prestressing strands, and 3% for harped prestressing strands. A design example is presented to illustrate the proposed design guidelines in determining the level of CFRP strengthening. The design considers the behavior of the strengthened girder at various service and ultimate limit states.  相似文献   

19.
The construction boom over the last century has resulted in a mature infrastructure network in developed countries. Lately, the issue of maintenance and repair/upgrading of existing structures has become a major issue, particularly in the area of bridges. Fiber- reinforced polymer (FRP) has shown great promise as a state-of-the-art material in flexural and shear strengthening as external reinforcement, but information on its applicability in torsional strengthening is limited. The need for torsional strengthening in bridge box girders is highlighted by the Westgate Bridge in Melbourne, Australia, one of the largest strengthening projects in the world for externally bonded carbon FRP (CFRP) laminates. This paper reports the experimental work in an overall investigation of torsional strengthening of solid and box-section reinforced concrete beams with externally bonded carbon FRP. This was found to be a viable method of torsional strengthening. Photogrammetry was a noncontact measuring technique used in the investigation. The deformation mechanisms were found to be unchanged in the strengthened specimens. Furthermore, it was found that the crack widths were reduced and aggregate interlocking action improved with the strengthened beams.  相似文献   

20.
One significant cause of deterioration of steel bridge structures is the corrosion due to extensive use of deicing salts in winter weather. The investigation presented in this paper focused on the behavior of steel composite beams damaged intentionally at their tension flange to simulate corrosion and then repaired with carbon fiber-reinforced polymer (CFRP) plates attached to their tension areas side. Damage to the beams was induced by removing part of the bottom flange, which was varied between no damage and loss of 75% of the bottom flange. All beams were tested to failure to observe their behavior in the elastic, inelastic, and ultimate states. To help implement this strengthening technique, a nonlinear analytical procedure was also developed to predict the behavior of the section/member in the elastic, inelastic, and ultimate states. The test results showed a significant increase in the strength and stiffness of the repaired beams. Through the use of CFRP plates, all damaged beams were fully restored to their original (undamaged state) strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号