首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the main features of an analytical model recently developed to predict the near-surface mounted (NSM) fiber-reinforced polymer (FRP) strips shear strength contribution to a reinforced concrete (RC) beam throughout the beam’s loading process. It assumes that the possible failure modes that can affect the ultimate behavior of an NSM FRP strip comprise: loss of bond (debonding); concrete semiconical tensile fracture; mixed shallow-semicone-plus-debonding; and strip tensile fracture. That model was developed by fulfilling equilibrium, kinematic compatibility, and constitutive law of both the adhered materials and the bond between them. The debonding process of an NSM FRP strip to concrete was interpreted and closed-form equations were derived after proposing a new local bond stress-slip relationship. The model proposed also addressed complex phenomena such as the interaction between the force transferred to the surrounding concrete through bond stresses and concrete fracture as well as the interaction among adjacent strips. The main features of the proposed modeling strategy are shown along with the main underlying physical-mechanical concepts and assumptions. Using recent experimental data, the predictive performance of the model is assessed. The model is also applied to single out the influence of relevant parameters on the NSM technique effectiveness for the shear strengthening of RC beams.  相似文献   

2.
The use of near surface mounted (NSM) fiber reinforced polymer (FRP) strips for strengthening reinforced concrete structures shows great promise as the strains at intermediate crack (IC) debonding are generally much greater than for externally bonded FRP strips. In this research, the NSM technique is taken a step further by embedding the NSM strip, i.e., is by providing cover to the strip. It is shown that embedment can increase the IC debonding resistance by up to three times. Importantly, embedment allows: substantially larger strains at IC debonding and, hence, greater ductility; the use of larger cross sections of FRP plate; and, through providing cover to the NSM, may be the first step in enhancing the fire resistance. In this paper, 20 new pull tests are described from which mathematical expressions are developed for the effect of embedment on both the IC debonding resistance and its associated local bond stress–slip (τ–δ) relationship.  相似文献   

3.
Fiber reinforced polymer (FRP) materials are currently produced in different configurations and are widely used for the strengthening and retrofitting of concrete structures and bridges. Recently, considerable research has been directed to characterize the use of FRP bars and strips as near surface mounted reinforcement, primarily for strengthening applications. Nevertheless, in-depth understanding of the bond mechanism is still a challenging issue. This paper presents both experimental and analytical investigations undertaken to evaluate bond characteristics of near surface mounted carbon FRP (CFRP) strips. A total of nine concrete beams, strengthened with near surface mounted CFRP strips were constructed and tested under monotonic static loading. Different embedment lengths were used to evaluate the development length needed for effective use of near surface mounted CFRP strips. A closed-form analytical solution is proposed to predict the interfacial shear stresses. The model is validated by comparing the predicted values with test results as well as nonlinear finite element modeling. A quantitative criterion governing the debonding failure of near surface mounted CFRP strips is established. The influence of various parameters including internal steel reinforcement ratio, concrete compressive strength, and groove width is discussed.  相似文献   

4.
This paper reports the results of an experimental program to investigate the bonding behavior of two different types of fiber-reinforced polymer (FRP) systems for strengthening RC members: externally bonded carbon (EBR) plates and bars or strips externally applied with the near-surface-mounted (NSM) technique. The overall experimental program consisted of 18 bond tests on concrete specimens strengthened with EBR carbon plates and 24 bond tests on concrete specimens strengthened with NSM systems (carbon, basalt, and glass bars, and carbon strips). Single shear tests (SST) were carried out on concrete prisms with low compressive strengths to investigate the bonding behavior of existing RC structures strengthened with different types of FRP systems. The performance of each reinforcement system is presented, discussed, and compared in terms of failure mode, debonding load, load-slip relationship, and strain distribution. The findings indicate that the NSM technique could represent a sound alternative to EBR systems because it allows debonding to be delayed, and hence FRP tensile strength to be better exploited.  相似文献   

5.
The flexural behavior of RC T-beams strengthened with prestressed near-surface-mounted (NSM) carbon fiber-reinforced-polymer (CFRP) reinforcement was investigated. The specific objective was to study the effect of partial unbonding of the CFRP reinforcement on the beam flexural behavior to increase the deformability. A total of eight RC T-beams were tested under four-point monotonic loading. The main variables were the level of prestressing force in the CFRP bars and the unbonded length at the midspan of the beam. The test results showed that all of the prestressed strengthened beams effectively improved the ultimate load-carrying capacity and the serviceability performance compared to the unstrengthened beam. The partially bonded prestressed beams exhibited an enhancement of the deformability compared to the fully bonded beams while minimizing the reduction of the load-carrying capacity. Partial unbonding was more effective to improve the deformability at higher levels of prestressing force. The general behavior of the partially bonded beams was reasonably well predicted by an analytical model developed previously by the writers.  相似文献   

6.
Understanding the transfer of force by bond between externally bonded fiber-reinforced polymer (FRP) reinforcement and concrete is an important step in formulating good models for predicting debonding failures observed in externally bonded reinforcement strengthened systems. In this paper, a 3D optical displacement measurement system was used to capture the full-field displacements from the front and side view in pull-off bond specimens. The experiments were carried using six specimens with carbon FRP (CFRP) strips having different axial stiffnesses but a constant bond length to the concrete substrate. Using the optical measurements, it was possible to obtain the in-plane displacement or slip and the out-of-plane displacement or separation between the CFRP strip and the concrete. It was demonstrated, that the usual assumption of pure shear stresses in such pull-off tests is not true and that the bond behavior is a two-dimensional problem involving shear and peeling stresses. The bond behavior in CFRP strip to concrete pull-off tests was characterized by three stages: (1) the initiation of the first crack; (2) the initiation of debonding; and (3) failure by complete debonding. Based on the test results it was found that there was a dependency between the maximum bond shear stress, the maximum fracture energy of the FRP-concrete interface, and the stiffness of the FRP. However, the slip values after initiation of debonding (Stage 2) were independent of the FRP stiffness. The measured anchorage force and anchorage length were in good agreement with predictions from existing code equations.  相似文献   

7.
This paper presents the results of experimental and analytical studies carried out to investigate the flexural behavior of reinforced concrete beams strengthened with end-anchored partially bonded carbon fiber-reinforced polymer (CFRP) strips. A total of six beams, each 2400 mm long, 150 mm wide, and 250 mm deep with a tension steel reinforcement ratio of 1.18%, were tested. One beam was left unstrengthened as the control, another beam was strengthened with a fully bonded CFRP strip, and the remaining four beams were strengthened with partially bonded CFRP strips placed on the tension face of the beam and fixed at both ends using a mechanical anchor. The influence of varying the CFRP unbonded length (250 mm, 750 mm, 2×500 mm, and 1,250 mm) on the beam flexural response was studied. The experimental results revealed that end-anchored partially bonded CFRP strips significantly enhanced the ultimate capacity of the control beam and performed better than the fully bonded strip with no end-anchorage. This observation stresses the importance of end-anchorage in such strengthening schemes, especially considering that the end-anchored partially bonded CFRP strengthened beams showed similar flexural behavior trends. Finally, an inelastic section analysis procedure that takes into consideration the incompatibility of strains was developed to verify the obtained test results. The analysis produced good predictions of the experimental results in terms of the moment-curvature response and showed the effect of CFRP unbonded length on the strain of the internal tension steel.  相似文献   

8.
Substantial research has been conducted on the shear strengthening of reinforced concrete (RC) beams with bonded fiber reinforced polymer (FRP) strips. The beams may be strengthened in various ways: complete FRP wraps covering the whole cross section (i.e., complete wrapping), FRP U jackets covering the two sides and the tension face (i.e., U jacketing), and FRP strips bonded to the sides only (i.e., side bonding). Shear failure of such strengthened beams is generally in one of two modes: FRP rupture and debonding. The former mode governs in almost all beams with complete FRP wraps and some beams with U jackets, while the latter mode governs in all beams with side strips and U jackets. In RC beams strengthened with complete wraps, referred to as FRP wrapped beams, the shear failure process usually starts with the debonding of FRP from the sides of the beam near the critical shear crack, but ultimate failure is by rupture of the FRP. Most previous research has been concerned with the ultimate failure of FRP wrapped beams when FRP ruptures. However, debonding of FRP from the sides is at least a serviceability limit state and may also be taken as the ultimate limit state. This paper presents an experimental study on this debonding failure state in which a total of 18 beams were tested. The paper focuses on the distribution of strains in the FRP strips intersected by the critical shear crack, and the shear capacity at debonding. A simple model is proposed to predict the contribution of FRP to the shear capacity of the beam at the complete debonding of the critical FRP strip.  相似文献   

9.
In recent years, a strengthening technique based on near-surface mounted (NSM) laminate strips of carbon-fiber-reinforced polymer (CFRP) has been used to increase the load-carrying capacity of concrete and masonry structures by introducing laminate strips into precut grooves on the concrete cover of the elements to be strengthened. The high experimentally derived levels of strength efficacy with concrete columns, beams, and masonry panels have presented NSM as a viable and promising technique. This practice requires no surface preparation work and, after cutting the groove, requires minimal installation time compared to the externally bonded reinforcing technique. A further advantage associated with NSM CFRP is its ability to significantly reduce the probability of harm resulting from fire, acts of vandalism, mechanical damage, and aging effects. To assess the bond behavior of CFRP to concrete, pullout-bending tests have been carried out. The influences of bond length and concrete strength on bond behavior are analyzed, the tests are described, and the results are presented and discussed in detail. Finally, a local stress-slip relationship is determined based on both experimental results and a numerical strategy.  相似文献   

10.
The results of an experimental and analytical investigation of shear strengthening of reinforced concrete (RC) beams with externally bonded (EB) fiber-reinforced polymer (FRP) strips and sheets are presented, with emphasis on the effect of the strip-width-to-strip-spacing ratio on the contribution of FRP (Vf). In all, 14 tests were performed on 4,520-mm-long T-beams. RC beams strengthened in shear using carbon FRP (CFRP) strips with different width-to-spacing ratios were considered, and their performance was investigated. In addition, these results are compared with those obtained for RC beams strengthened with various numbers of layers of continuous CFRP sheet. Moreover, various existing equations that express the effect of FRP strip width and concrete-member width and that have been proposed based on single or double FRP-to-concrete direct pullout tests are checked for RC beams strengthened in shear with CFRP strips. The objectives of this study are to investigate the following: (1)?the effectiveness of EB discontinuous FRP sheets (FRP strips) compared with that of EB continuous FRP sheets; (2)?the optimum strip-width-to-strip-spacing ratio for FRP (i.e., the optimum FRP rigidity); (3)?the effect of FRP strip location with respect to internal transverse-steel location; (4)?the effect of FRP strip width; and (5)?the effect of internal transverse-steel reinforcement on the CFRP shear contribution.  相似文献   

11.
Near-surface mounted (NSM) carbon fiber reinforced polymer (CFRP) laminate strips are used to increase the load-carrying capacity of concrete structures. This is done by inserting the CFRP strips into slits made in the concrete cover of the elements to be strengthened and gluing the strips to the concrete with an epoxy adhesive. In several cases the NSM technique has substantial advantages when compared with externally bonded laminates. To assess the bond behavior between the CFRP and concrete under monotonic and cyclic loading, an experimental program was carried out based on a series of pullout-bending tests. The influence of the bond length and loading history on the bond behavior was investigated. In this work the details of the tests are described and the obtained results discussed. Using the experimental data and an analytical-numerical strategy, a local bond stress-slip relationship was determined. A finite-element analysis was performed to evaluate the influence of the adhesive on the global response observed in the pullout-bending tests.  相似文献   

12.
RC beams shear strengthened with either fiber-reinforced polymer (FRP) U-jackets/U-strips or side strips commonly fail due to debonding of the bonded FRP shear reinforcement. As such debonding occurs in a brittle manner at relatively small shear crack widths, some of the internal steel stirrups may not have reached yielding. Consequently, the yield strength of internal steel stirrups in such a strengthened RC beam cannot be fully used. In this paper, a computational model for shear interaction between FRP strips and steel stirrups is first presented, in which a general parabolic crack shape function is employed to represent the widening process of a single major shear crack in an RC beam. In addition, appropriate bond-slip relationships are adopted to accurately depict the bond behavior of FRP strips and steel stirrups. Numerical results obtained using this computational model show that a substantial adverse effect of shear interaction generally exists between steel stirrups and FRP strips for RC beams shear strengthened with FRP side strips. For RC beams shear strengthened with FRP U-strips, shear interaction can still have a significant adverse effect when FRP strips with a high axial stiffness are used. Therefore, for accurate evaluation of the shear resistance of RC beams shear strengthened with FRP strips, this adverse effect of shear interaction should be properly considered in design.  相似文献   

13.
Bond tests were conducted on concrete beams strengthened with near-surface-mounted (NSM) nonprestressed and prestressed carbon fiber-reinforced polymer (CFRP) rods under static loading. In the NSM technique, the CFRP rods are placed inside precut grooves and bonded to the concrete with epoxy adhesive. Six concrete beams were tested. The test variables included presence of internal tension steel reinforcement (unreinforced and reinforced), use of NSM CFRP strengthening (nonprestressed and prestressed), and type of CFRP rod (spirally wound and sand blasted). The beams were tested statically in four-point bending. Based on the test results, the transfer length for the prestressed CFRP rod in epoxied groove was 150 and 210 mm for the sand blasted and spirally wound rods, respectively. The main failure mode was debonding between the CFRP rod and the epoxy that starts at sections close to the midspan then, as the load increases, it propagates toward the supports. At failure, the beams strengthened with a given rod type showed the same CFRP strain at sections close to the support (29% of ultimate strain for spirally wound bars and 39% of ultimate strain for sand blasted bars). A cracked section analysis was carried out and compared well with the measured results.  相似文献   

14.
Four prestressed concrete beams were constructed and tested to investigate the effectiveness of flexural post-strengthening with prestressed carbon fiber-reinforced polymer (CFRP) strips. One of the beams served as a reference beam, another was bonded with an unstressed CFRP strip, and the remaining two specimens were strengthened with prestressed CFRP strips at two prestressing levels. The gradient method was used for the anchorage of the prestressed CFRP strips. Experimental and analytical calculations are compared with the test results. Further, different failure modes are explained. On the basis of this investigation, recommendations for the use of prestressed CFRP strips anchored with the gradient method are given.  相似文献   

15.
An experimental investigation was conducted to study the in-plane shear behavior of masonry panels strengthened with near-surface mounted (NSM) carbon fiber-reinforced polymer strips (CFRP). As part of the study four unreinforced masonry panels and seven strengthened panels were tested in diagonal tension/shear. Different reinforcement orientations were used including vertical, horizontal, and a combination of both. The effect of nonsymmetric reinforcement was also studied. The results of these tests are presented in this paper, and include the load-displacement behaviors, crack patterns, failure modes, and FRP strains. The results showed that the vertically aligned reinforcement was the most effective, with significant increases in strength and ductility observed. The dowel strength of the vertical reinforcement did not likely contribute significantly to the shear resistance of the masonry. Instead, it was likely that the vertical reinforcement acted in tension to restrain shear induced dilation and restrain sliding. In some panels cracking adjacent to the FRP strip, through the panel thickness was observed. This type of cracking reduced the bond between one side of the FRP strip and the masonry, and led to premature debonding. A comparison of the test results with the results of other tests from the literature is also presented in this paper.  相似文献   

16.

外贴碳纤维板是钢梁抗弯加固的常用方法,但其端部易因界面应力集中导致剥离破坏,严重影响高性能材料的有效利用,特别是结构加固后的安全服役. 为此开发出一种适用于H型钢梁的简易夹具——C形槽板夹,以加强碳纤维板的端部锚固. 通过多根带夹碳纤维板加固梁的静力加载试验,验证了此夹具的可靠性,并考察了碳纤维板伸入剪跨段长度与剪跨段长度之比及锚固方式(纯粘、端锚和混锚)对加固效果的影响. 研究发现端锚加固不同于纯粘,只要梁的控制截面仍在夹具之间,碳纤维板的极限应力、加固效果及利用效率均随其长度缩短而提高,当碳纤维板长度分别为600、750 mm时,前者极限应变和承载力比后者分别高27.3%和8.1%. 由于钢梁表面处理质量较差,混锚加固梁均发生突然剥离,后期退化为端锚加固梁,因而相比端锚加固梁加固效果改善不大,需要提高表面处理质量再做类似研究. 尽管如此,相比纯粘加固梁,混锚加固梁采用C形槽板夹后剥离破坏被延迟,抗弯性能大为改善. 试验过程中还用压电阻抗法对界面剥离情况进行了检测,结果符合实际.

  相似文献   

17.
This paper describes an experimental program conducted to develop new carbon fiber reinforced polymer (CFRP) stirrups as shear reinforcement for concrete members. The structural behavior of the CFRP stirrups was examined. To simulate the performance mechanism of stirrups in concrete beams, the CFRP stirrup was embedded in two concrete blocks and tested in tension by pushing the concrete blocks away from each other. A total of 12 specimens were constructed and tested to failure. The test variables were the tail length of the stirrup beyond the bent portion, the stirrup anchorage, the bar diameter, and the embedment length. In addition, two full-scale concrete beams reinforced with CFRP stirrups as shear reinforcement were constructed and tested to failure. Test results of the concrete blocks indicated that the strength capacity at the bend of the newly developed CFRP stirrups was adequate and fulfilled the design requirements of different codes and design guides. Further, the tail length was found to be not less than six times the bar diameter to develop the stirrup capacity. The performance of the stirrups in the beam tests was appropriate until reaching the failure of the beams in flexure.  相似文献   

18.
This paper presents the flexural behavior of rolled steel beams that were strengthened with partial-length, adhesive-bonded carbon fiber-reinforced polymer (CFRP) plates. The hybrid beams had two types of failure mode, depending on the length of the plate: (1) plate debonding in beams with short plates;?and (2) plate rupture at midspan in beams with long plates. The flexural behavior that was investigated includes the development of tensile stresses in the plate, the moment-curvature of the strengthened section, and the load-deflection of the strengthened beam. The analytical methods used include shear lag analysis, section analysis, and application of the virtual work principle. Agreement between the experimental results and the analytical predictions is discussed.  相似文献   

19.
Shear failure is catastrophic and occurs usually without advance warning; thus it is desirable that the beam fails in flexure rather than in shear. Many existing reinforced concrete (RC) members are found to be deficient in shear strength and need to be repaired. Externally bonded reinforcement such as carbon-fiber-reinforced polymer (CFRP) provides an excellent solution in these situations. To investigate the shear behavior of RC beams with externally bonded CFRP shear reinforcement, 11 RC beams without steel shear reinforcement were cast at the concrete laboratory of the New Jersey Institute of Technology. After the beams were kept in the curing room for 28?days, carbon-fiber strips and fabrics made by Sika Corp. were applied on both sides of the beams at various orientations with respect to the axis of the beam. All beams were tested on a 979?kN (220?kips) MTS testing machine. Results of the test demonstrate the feasibility of using an externally applied, epoxy-bonded CFRP system to restore or increase the shear capacity of RC beams. The CFRP system can significantly increase the serviceability, ductility, and ultimate shear strength of a concrete beam; thus, restoring beam shear strength by using CFRP is a highly effective technique. An analysis and design method for shear strengthening of externally bonded CFRP has been proposed.  相似文献   

20.
This paper presents experimental results of reinforced concrete beams strengthened using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) reinforcement. A total of nine beam specimens were tested under fatigue loads. In addition, two specimens were tested for monotonic capacity. The beams were 3,500 mm long with a cross section of 254 mm deep by 152 mm wide. Different load ranges were considered in the fatigue tests to construct the fatigue life curves. The test results showed that under monotonic loading, the beam strengthened with NSM CFRP rod exhibited increases of 26 and 50% in the yield and ultimate load over the control beam, respectively. Under cyclic loading, the fatigue life for the strengthened beams was 24% higher than that of the control unstrengthened beams. An analytical model using sectional analysis and strain-life approach was developed to estimate the fatigue life of the specimens at various cyclic load ranges. A good agreement between the experimental results and analytical prediction of the fatigue life was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号