首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study of the micromechanical damage behavior of asphalt concrete is presented. Asphalt concrete is composed of aggregates, mastic cement, and air voids, and its load carrying behavior is strongly related to the local microstructural load transfer between aggregate particles. Numerical simulation of this micromechanical behavior was accomplished by using a finite-element model that incorporated the mechanical load-carrying response between aggregates. The finite-element scheme used a network of special frame elements each with a stiffness matrix developed from an approximate elasticity solution of the stress and displacement field in a cementation layer between particle pairs. Continuum damage mechanics was then incorporated within this solution, leading to the construction of a microdamage model capable of predicting typical global inelastic behavior found in asphalt materials. Using image processing and aggregate fitting techniques, simulation models of indirect tension, and compression samples were generated from surface photographic data of actual laboratory specimens. Model simulation results of the overall sample behavior and evolving microfailure/fracture patterns compared favorably with experimental data collected on these samples.  相似文献   

2.
3.
A novel system identification procedure is proposed for nondestructive damage evaluation of structures. It is a finite element-based time-domain linear system identification technique capable of identifying structures at the element level. The unique features of the algorithm are that it can identify a structure without using any input excitation information and it can consider both viscous and Rayleigh-type proportional damping in the dynamic models. The consideration of proportional damping introduces a source of nonlinearity in the otherwise linear dynamic algorithm. However, it will also reduce the total number of damping coefficients to be identified, reducing the size of the problem. The Taylor series approximation is used to transform a nonlinear set of equations to a linear set of equations. The proposed algorithm, denoted as the modified iterative least square with unknown input algorithm, is verified with several examples considering various types of structures including shear-type building, truss, and beams. The algorithm accurately identified the stiffness of structures at the element level for both viscous (linear) and proportional (nonlinear) damping cases. It is capable of identifying a structure even with noise-contaminated response information. An example shows how the algorithm could be used in detecting the exact location of a defect in a defective element. The algorithm is being developed further and is expected to provide an economical, simple, efficient, and robust system identification technique that can be used as a nondestructive defect detection procedure in the near future.  相似文献   

4.
Impedance-Based Method for Nondestructive Damage Identification   总被引:1,自引:0,他引:1  
A structural damage identification technique based on the impedance method is presented in this paper using smart piezoelectric transducer (PZT) patches. A modeling framework is developed to determine the structural impedance response and the dynamic output forces of PZT patches from the electric admittance measurements. A damage identification scheme for solving the nonlinear optimization problem is proposed to locate and quantify the structural damage through the minimization of the discrepancy between the structural impedance response and the numerically computed frequency response. The proposed technique does not use modal analysis or model reduction, and only the electric admittance measurements of PZT patches and the analytical system matrices are required. A beam example has been employed to illustrate the effectiveness of the proposed algorithm numerically. Furthermore, the influence of the measurement noise on the results has been investigated.  相似文献   

5.
In this study, a new concept for detecting air voids, water intrusion, and glue infiltration damages in fiber-reinforced polymers (FRPs)-strengthened concrete structures was developed. The concept, based on detecting the local dielectric permittivity variations, was employed to design coplanar capacitance sensors (CCSs) to detect such defects. An analytical model was used to introduce the sensor operation theory and analyze the influence of different sensor parameters on the output signals and to optimize sensor design. Two dimensional finite element (FE) simulations were performed to assess the validity of the analytical results and to evaluate other sensor design-related parameters. To experimentally verify the FE model, dielectric properties of various materials involved in FRP-strengthened concrete systems were measured. In addition, two concrete specimens strengthened with FRP laminates and containing preinduced defects were constructed and inspected in a laboratory setting. Good agreement was found between experimental capacitance measurements and those predicated by the FE simulations. The proposed CCS design, coupled with commercially available portable capacitance meters, would facilitate field implementation of the proposed technique for rapid inspection of FRP-strengthened concrete structures without the need for sophisticated data analyses usually required by other more expensive and time consuming methods.  相似文献   

6.
The finite-element software framework OpenSees is extended with parameter updating and response sensitivity capabilities to support client applications such as reliability, optimization, and system identification. Using software design patterns, member properties, applied loadings, and nodal coordinates can be identified and repeatedly updated in order to create customized finite-element model updating applications. Parameters are identified using a Chain of Responsibility software pattern, where objects in the finite-element model forward a parameterization request to component objects until the request is handled. All messages to identify and update parameters are passed through a Facade that decouples client applications from the finite-element domain of OpenSees. To support response sensitivity analysis, the Strategy design pattern facilitates multiple approaches to evaluate gradients of the structural response, whereas the Visitor pattern ensures that objects in the finite-element domain make the proper contributions to the equations that govern the response sensitivity. Examples demonstrate the software design and the steps taken by representative finite-element model updating and response sensitivity applications.  相似文献   

7.
The structural condition assessment of highway bridges is largely based on visual observations described by subjective indices, and it is necessary to develop a methodology for an accurate and reliable condition assessment of aging and damaged structures. This paper presents a method using a systematically validated finite-element model for the quantitative condition assessment of a damaged reinforced concrete bridge deck structure, including damage location and extent, residual stiffness evaluation, and load-carrying capacity assessment. In a trial of the method in a cracked bridge beam, the residual stiffness distribution was determined by model updating, thereby locating the damage in the structure. Furthermore, the damage extent was identified through a defined damage index and the residual load-carrying capacity was estimated.  相似文献   

8.
The Land Transport Authority of Singapore has a continuing program of highway bridge upgrading for refurbishing and strengthening bridges to allow for increasing vehicle traffic and increasing axle loads. One subject of this program has been a short-span bridge taking a busy main road across a coastal inlet near a major port facility. Experiment-based structural assessments of the bridge were conducted before and after upgrading works including strengthening. Each assessment exercise comprised three separate components: (1) a strain and acceleration monitoring exercise lasting approximately one month; (2) a full-scale dynamic test carried out in a single day without closing the bridge; and (3) a finite-element model updating exercise to identify structural parameters and mechanisms. This paper presents the dynamic testing and the modal analysis used to identify the vibration properties and the quantification of the effectiveness of the upgrading through the subsequent model updating. Before and after upgrade, similar sets of vibration modes were identified, resembling those of an orthotropic plate with relatively weak transverse bending stiffness. Conversion of bearings from nominal simple supports to nominal full fixity was shown via model updating to be the principal cause of natural frequency increases of up to 50%. The utility of the combined experimental and analytical process in direct identification of structural properties has been proven, and the procedure can be applied to other structures and their capacity assessments.  相似文献   

9.
This study proposes a method of detecting, locating, and quantifying structural damage by directly using structural vibration measurements in the time domain. In this method, the coupling effect of the damage at different locations in the structure on the structural vibratory responses is eliminated by projecting these measured quantities onto some specific subspaces. As a result, the structural system, generally modeled with multiple degree of freedom, is decomposed into several independent single-degree-of-freedom (SDOF) systems, every one of which is only associated with the damage at one certain location or region. A monitor is designed as an observer to detect the structural damage related to each SDOF system. A decision-making scheme is developed to correlate the monitor’s output to the occurrence of the damage. The severity of the damage is estimated with a traditional system identification method in an iterative way. The analysis of the effects of measurement noise is also included. Numerical examples are presented to demonstrate the effectiveness of the proposed method.  相似文献   

10.
This article summarizes an engineering evaluation of the extent of fire damage to a concrete structure under construction. The fire occurred in a portion of the reinforced concrete structure and visibly damaged a load bearing exterior foundation wall. The purpose of the assessment was to promptly evaluate the in situ condition of the wall and recommend necessary repair or replacement options prior to commencement of backfilling and the concrete construction to be supported by the subject wall. The engineering assessment of the damaged wall included a nondestructive evaluation phase consisting of ultrasonic pulse velocity testing and a laboratory testing phase on the concrete cores removed from the damaged wall. Dynamic Young’s modulus of elasticity and an air permeability index of 25?mm (1?in.) thick disks sawed from the cores were determined. Analysis of properties of 25?mm (1?in.) concrete specimens permitted assessment of the presence and degree of any damage in smaller depth increments compared to the size of a compressive strength core. Significant differences were not indicated by compressive strength of cores, however, the in situ nondestructive testing and laboratory testing of the disks were effective in determining the depth of damage, as a result of the fire. The results of the nondestructive and laboratory evaluation indicated that the distressed zone of the concrete was limited to a near-surface layer. Repair recommendations were based on removal and replacement of the affected concrete sections identified by the testing program.  相似文献   

11.
Impact-echo tests were performed on a precast, reinforced concrete bridge slab that was removed from a maintenance bridge built in 1953 in South Carolina. Impact-echo tests were first performed to nondestructively assess the initial condition and the distribution of damage throughout the slab by analyzing the variation in propagation wave velocity. It was found that the velocity varied by as much as 900?m/s throughout the slab. After the in-service condition was assessed, the slab was subjected to a full-scale static load test in the laboratory and impact-echo tests were again performed, this time to evaluate the initiation and progression of damage (stiffness loss and crack development) within the slab. After structural failure of the slab, a reduction in propagation wave velocity up to 6% was observed correlating to a reduction in slab stiffness. Cracks were detected within the concrete slab that were not visible from the surface. Areas with preexisting damage experienced more crack growth when subjected to the load test than those that were initially intact. Locations exhibiting stiffness loss, crack propagation, and localized damage can be differentiated such that the method can be used to make decisions between rehabilitating and replacing concrete bridge decks depending upon the severity of damage.  相似文献   

12.
This paper presents a technology for detecting invisible damage inside concrete, which is based on reconstruction of dielectric profile (image) of the concrete illuminated with microwaves sent from and received by antenna arrays controlled by specialized software. The imaging system developed in this study consists of an 8×8 transmitting and an 8×8 receiving arrays, an innovative numerical bifocusing operator for improving image resolution, and imaging software for reconstructing a two-dimensional image from the scattered field. The effectiveness of the developed technology in detecting steel and voids inside concrete has been demonstrated through numerical simulation and experiments.  相似文献   

13.
The effectiveness of vibration-based methods in damage detection of a typical highway structure is investigated. Two types of full-scale concrete structures subjected to fatigue loads are studied: (1) Portland cement concrete pavements on grade; and (2) a simply supported prestressed concrete beams. Fast Fourier transform (FFT) and continuous wavelet transform (CWT) are used in the analysis of the structures’ dynamic response to impact, and results from both techniques are compared. Both FFT and CWT can identify which frequency components exist in a signal. However, only the wavelet transform can show when a particular frequency occurs. Results of this research are such that FFT can detect the progression of damage in the beam but not in the slab. In contrast, the CWT analysis yielded a clear difference between the initial and damaged states for both structures. These findings confirm the conclusions of previous studies conducted on small-scale specimens that wavelet analysis has a great potential in the damage detection of concrete. The study also demonstrates that the approach is applicable to full-scale components of sizes similar or close to actual in-service structures.  相似文献   

14.
This article discusses the use of nondestructive and laboratory testing techniques and load testing in evaluation of fire damage to precast prestressed concrete members in a parking structure. The in situ evaluation phase consisted of nondestructive testing of concrete using ultrasonic pulse velocity and radiographic exposures to locate tendons prior to the removal of cores. Flexural strength of concrete and dynamic Young’s modulus of elasticity and air permeability index of 25?mm (1?in.) thick disks sawed from the cores were determined in the subsequent laboratory testing phase. Analysis of concrete properties at small depth increments permitted assessment of whether a damage gradient was present and the nature of any gradient found, as expressed by changes in these properties. Based on the compromise in material properties indicated by nondestructive and laboratory testing, two affected double-tees were load tested. The deflection pattern observed during load testing confirmed the compromise indicated by the findings of the testing program.  相似文献   

15.
This paper presents an experimental investigation on the applicability of the empirical mode decomposition (EMD) for identifying structural damage caused by a sudden change of structural stiffness. A three-story shear building model was constructed and installed on a shaking table with two springs horizontally connected to the first floor of the building to provide additional structural stiffness. Structural damage was simulated by suddenly releasing two pretensioned springs either simultaneously or successively. Various damage severities were produced using springs of different stiffness. A series of free vibration, random vibration, and earthquake simulation tests were performed on the building with sudden stiffness changes. Dynamic responses including floor accelerations and displacements, column strains, and spring releasing time instants were measured. The EMD was then applied to measured time histories to identify damage time instant and damage location for various test cases. The comparison of identified results with measured ones showed that damage time instants could be accurately detected in terms of damage spikes extracted directly from the measurement data by EMD. The damage location could be determined by the spatial distribution of the spikes along the building. The influence of damage severity, sampling frequency, and measured quantities on the performance of EMD for damage detection was also discussed.  相似文献   

16.
This paper describes the experimental and analytical modal analysis of a full-scale cantilevered grandstand. A 3D finite-element model was successfully updated manually based on the global modes identified from ambient vibration measurements. The ambient vibration testing was effective in capturing the global modes of the large grandstand. A number of global vibration modes of the entire grandstand were reliably identified in the frequency range 0–3.1 Hz, in addition to modes in the same frequency range that engaged primarily the cantilever roof structure. Following a two-stage manual FE model updating process, the correlation between the experimental and analytical results showed good agreement, with physically meaningful updated parameters. It was clearly illustrated that both the roof system and the nonstructural elements contributed significantly to the stiffness and mass of the global modes. Useful and novel lessons are highlighted for efficient and reliable future finite-element modeling of global modes of similar grandstand structures.  相似文献   

17.
Knowing the ability of reinforced concrete (RC) bridges to withstand future seismic demands during their life-cycle can help bridge owners make rational decisions regarding optimal allocation of resources for maintenance, repair, and/or rehabilitation of bridge systems. The accuracy of a reliability assessment can be improved by incorporating information about the current aging and deterioration conditions of a bridge. Nondestructive testing (NDT) can be used to evaluate the actual conditions of a bridge, avoiding the use of deterioration models that bring additional uncertainties in the reliability assessment. This paper develops probabilistic deformation and shear capacity models for RC bridge columns that incorporate information obtained from NDT. The proposed models can be used when the flexural stiffness decays nonuniformly over a column height. The flexural stiffness of a column is estimated based on measured acceleration responses using a system identification method and the damage index method. As an application of the proposed models, a case study assesses the fragility (the conditional probability of attaining or exceeding a specified capacity level) of the column in the Lavic Road Overcrossing for a given deformation or shear demand. This two-span concrete box-girder bridge located in Southern California was subject to the Hector Mine Earthquake in 1999. Pre- and postearthquake estimates of the univariate shear and deformation fragilities and of the bivariate shear-deformation fragility are computed and compared. Both displacement and shear capacities are found to decrease after the earthquake event. Additionally, the results show that the damage due to the Hector Mine Earthquake has a larger impact on the shear capacity than the deformation capacity, leading to a more significant increment in the shear fragility than in the deformation fragility.  相似文献   

18.
This paper presents a global damage detection and assessment algorithm based on a parameter estimation method using a finite-element model and the measured modal response of a structure. Damage is characterized as a reduction of the member constitutive parameter from a known baseline value. An optimization scheme is proposed to localize damaged parts of the structure. The algorithm accounts for the possibility of multiple solutions to the parameter estimation problem that arises from using spatially sparse measurements. Errors in parameter estimates caused by sensitivity to measurement noise are reduced by selecting a near-optimal measurement set from the data at each stage of the localization algorithm. Damage probability functions are computed upon completion of the localization process for candidate elements. Monte Carlo methods are used to compute the required probabilities based on the statistical distributions of the parameters for the damaged and the associated baseline structure. The algorithm is tested in a numerical simulation environment using a planar bridge truss as a model problem.  相似文献   

19.
Because a structure’s modal parameters (natural frequencies and mode shapes) are affected by structural damage, finite- element model updating techniques are often applied to locate and quantify structural damage. However, the dynamic behavior of a structure can only be observed in a narrow knowledge space, which usually causes nonuniqueness and ill-posedness in the damage detection problem formulation. Thus, advanced optimization techniques are a necessary tool for solving such a complex inverse problem. Furthermore, a preselection process of the most significant damage parameters is helpful to improve the efficiency of the damage detection procedure. A new approach, which combines a parameter subset selection process with the application of damage functions is proposed herein to accomplish this task. Starting with a simple 1D beam, this paper first demonstrates several essential concepts related to the proposed model updating approach. A more advanced example considering a 2D model is then considered. To determine the capabilities of this approach for more complex structures, a trust region-based optimization method is adopted to solve the corresponding nonlinear minimization problem. The objective is to provide an improved robust solution to this challenging problem.  相似文献   

20.
Structural health monitoring (SHM) is a promising field with widespread application in civil engineering. Structural health monitoring has the potential to make structures safer by observing both long-term structural changes and immediate postdisaster damage. However, the many SHM studies in the literature apply different monitoring methods to different structures, making side-by-side comparison of the methods difficult. This paper details the first phase in a benchmark SHM problem organized under the auspices of the IASC–ASCE Structural Health Monitoring Task Group. The scale-model structure adopted for use in this benchmark problem is described. Then, two analytical models based on the structure—one a 12 degree of freedom (DOF) shear-building model, the other a 120-DOF model, both finite element based—are given. The damage patterns to be identified are listed as well as the types and number of sensors, magnitude of sensor noise, and so forth. MATLAB computer codes to generate the response data for the various cases are explained. The codes, as well as details of the ongoing Task Group activities, are available on the Task Group web site at 〈http://wusceel.cive.wustl.edu/asce.shm/〉.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号