首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The research presented in this paper evaluates the flexural performance of bridge deck panels reinforced with 2D fiber-reinforced polymer (FRP) grids. Two different FRP grids were investigated, one reinforced with a hybrid of glass and carbon fibers and a second grid reinforced with carbon fibers only. Laboratory measured load-deflection, load-strain (reinforcement and concrete), cracking, and failure behavior are presented in detail. Conclusions regarding failure mode, limit-state strength, serviceability, and deflection compatibility relative to AASHTO mandated criteria are reported. Test results indicate that bridge decks reinforced with FRP grids will be controlled by serviceability limit state and not limit-state ultimate strength. The low axial stiffness of FRP results in large service load flexural deflections and reduced shear strength. In as much as serviceability limits design, overreinforcement is recommended to control deflection violation. Consequently, limit-state flexural strength will be compression controlled for which reduced service stresses or ACI unified compression failure strength reduction factors are recommended.  相似文献   

2.
Currently, considerable interest exists in the use of fiber-reinforced polymer (FRP) reinforcement for concrete structures. Due to the generally lower modulus of elasticity of FRP in comparison with steel and the linear behavior of FRP, certain aspects of the structural behavior of RC members reinforced with FRP may be substantially different from similar elements reinforced with steel reinforcement. In this two-part paper the use of different types of FRP grid reinforcement for concrete slabs is investigated, presenting detailed experimental and analytical work. In the first part, the structural behavior in one-way bending is considered. This paper shows which structural measures are needed to ensure acceptable serviceability behavior. The presented analysis and discussion of test results covers the ultimate state and the ultimate limit state for bending, serviceability limit states, ductility, deformability, and ultimate to service load ratio.  相似文献   

3.
Reinforcing concrete with a combination of steel and glass fiber-reinforced polymer (GFRP) bars promises favorable strength, serviceability, and durability. To verify its promise and to support design of concrete structures with this hybrid type of reinforcement, we have experimentally and theoretically investigated the load-deflection behavior of concrete beams reinforced with hybrid GFRP and steel bars. Eight beams, including two control beams reinforced with only steel or only GFRP bars, were tested. The amount of reinforcement and the ratio of GFRP to steel were the main parameters investigated. Hybrid GFRP/steel-reinforced concrete beams with normal effective reinforcement ratios exhibited good ductility, serviceability, and load carrying capacity. Comparisons between the experimental results and the predictions from theoretical analysis showed that the models we adopted could adequately predict the load carrying capacity, deflection, and crack width of hybrid GFRP/steel-reinforced concrete beams.  相似文献   

4.
Due to concerns with corrosion, the use of fiber-reinforced polymer (FRP) as a replacement to conventional steel reinforcement has greatly increased over the last decade. Researchers have identified the distinctive mechanical and bond properties of FRP reinforcement that prevent the use of existing relationships to establish serviceability of concrete structures reinforced with such products. Although studies have modified these empirical relationships to describe the behavior of structures reinforced with FRP reinforcement, this paper will provide a new approach to estimate deflection of concrete beams by considering material properties of the reinforcement and incorporating the effects of tension stiffening. Accuracy and precision of the approach was established by performing a statistical analysis on a database containing 171 FRP-reinforced concrete beams. Results were compared to those from existing proposed relationships and indicate the potential of the method to estimate deflection at various service conditions.  相似文献   

5.
This paper evaluates the shear strength of one-way concrete slabs reinforced with different types of fiber-reinforced polymer (FRP) bars. A total of eight full-size slabs were constructed and tested. The slabs were 3,100?mm?long×?1,000?mm?wide×200?mm?deep. The test parameters were the type and size of FRP reinforcing bars and the reinforcement ratio. Five slabs were reinforced with glass FRP and three were reinforced with carbon FRP bars. The slabs were tested under four-point bending over a simply supported clear span of 2,500 mm and a shear span of 1,000 mm. All the test slabs failed in shear before reaching the design flexural capacity. The experimental shear strengths were compared with some theoretical predictions, including the JSCE recommendations, the CAN/CSA-S806-02 code, and the ACI 440.1R-03 design guidelines. The results indicated that the ACI 440.1R-03 design method for predicting the concrete shear strength of FRP slabs is very conservative. Better predictions were obtained by both the CAN/CSA-S806-02 code and the JSCE design recommendations.  相似文献   

6.
Due to increasing popularity of using fiber-reinforced polymer (FRP) for external strengthening of concrete structures, an urgent demand for understanding the structural behavior of FRP-strengthened structures has been emerging. Unlike conventional reinforced concrete (RC) structures, FRP-strengthened members can exhibit additional flexural capacity in the postyielding stage. This makes RC models for predicting deflection inapplicable in case of FRP-strengthened structures. Therefore, some models have been explicitly developed for evaluating deflection of the strengthened structures. However, most existing models are empirically based, verified with limited experimental results, and require in some cases sophisticated calculation procedures. Accordingly, there is still a demand for a rational and more convenient model for predicting deflection of FRP-strengthened beams. In the current paper, Bischoff’s model, originally proposed for RC and FRP reinforced structures, was extended. Consequently, the developed model is applicable to FRP-strengthened concrete beams besides its validity to both RC and FRP reinforced beams. Validation of the model with some available test data confirmed its accuracy.  相似文献   

7.
The use of near surface mounted (NSM) fiber-reinforced polymer (FRP) rods is a promising technology for increasing flexural and shear strength of deficient reinforced concrete (RC) members. As this technology emerges, the structural behavior of RC elements strengthened with NSM FRP rods needs to be fully characterized. Given the variability of material properties and groove geometry, this requires that the tensile properties of the FRP rod and the mechanics of load transfer between NSM FRP rods and concrete be investigated. Tensile and bond tests on commercially available carbon FRP deformed rods for application as NSM reinforcement were carried out using test methods that are expected to become standards in North America. Three full-size beams, one control beam and two beams strengthened in shear with NSM FRP rods, were tested. Test results are presented and compared with the predictions of a simple design approach, showing reasonable agreement.  相似文献   

8.
This paper presents results of an evaluation of the fatigue performance of a novel steel-free fiber-reinforced polymer (FRP)–concrete modular bridge deck system consisting of wet layup FRP–concrete deck panels which serve as both formwork and flexural reinforcement for the steel-free concrete slab cast on top. A two-span continuous deck specimen was subjected to a total of 2.36 million cycles of load simulating an AASHTO HS20 design truck with impact at low and high magnitudes. Quasistatic load tests were conducted both before initiation of fatigue cycling and after predetermined numbers of cycles to evaluate the system response. No significant stiffness degradation was observed during the first 2 million cycles of fatigue service load. A level of degradation was observed during subsequent testing at higher magnitudes of fatigue load. A fairly elastic and stable response was obtained from the system under fatigue service load with little residual displacement. The system satisfied both strength and serviceability limit states with respect to the code requirements for crack width and deflection.  相似文献   

9.
The paper analyzes the structural behavior of concrete beams reinforced with hybrid fiber-reinforced polymer (FRP)-steel reinforcements. The analysis refers to concrete beams reinforced with FRP rebars placed near the outer surface of the tensile zone, with low cover thickness values, and steel rebars placed at the inner level of the tensile zone, with high cover thickness values, able to protect the steel from the corrosion. Such reinforcement allows one to optimize the structural behavior of beams and guarantees a good level of ductility and rigidity. Results of an experimental and theoretical investigation are presented and discussed. Significant features of the structural behavior regarding deflection, curvature, ductility, crack width, and spacing are pointed out. Ultimate and serviceability conditions are examined, highlighting the influence of mechanical and geometrical parameters affecting the behavior of hybrid reinforced-concrete beams.  相似文献   

10.
The “Design Guidelines of FRP Reinforced Concrete Building Structures” was established in 1993 as one of the final outputs of the research committee on fiber-reinforced plastic (FRP) reinforced concrete building structures organized under the Japanese Ministry of Construction's research and development project titled: “Effective Use of Advanced Construction Materials (1988–92).” These Guidelines are a translation of the Japanese guidelines. They describe the design concept for nonprestressed concrete structures reinforced with FRP rebars, and the calculation equations are all relegated to the commentaries due to lack of design data on FRP reinforced concrete structures. A limit-state design method has been adopted under the guidelines. Among the subjects covered are overview, design method, materials, loads and combination, stress and deformation, ultimate state design, serviceability state design, structural requirement, and testing methods for the tensile strength and bond strength of materials. “The Design Guidelines for FRP Prestressed Concrete Members” is separate from these guidelines.  相似文献   

11.
The use of composite materials in structural engineering is recent, and researchers need to investigate their behavioral features. Design criteria and methods have to be redefined, and several countries have already established design procedures specifically for fiber-reinforced plastic (FRP) use. Generally the proposed code modifications are conservative and the strength capacity of FRP materials is not efficiently used. This limitation is due to the low number of experimental tests on concrete structures reinforced with FRP bars. In this paper, experimental tests on beams reinforced with glass FRP bars are presented and discussed. Significant features of the structural behavior are pointed out regarding curvature, deflection, and crack spacing and width. Furthermore the verifications at ultimate and serviceability conditions are analyzed. Code formulations for deflection and crack width calculation are examined considering the American Concrete Institute and the Eurocode 2 approaches.  相似文献   

12.
Advancements in fiber-reinforced polymers (FRPs) have made this an attractive material for rehabilitation and strengthening of bridge superstructures. FRP has primarily been used with the intention of increasing the bending strength of bridge members. However, this paper investigates the use of externally placed FRP strips to increase shear capacity of short-span, 5.7?m (19?ft), precast concrete channel beam bridges. A statewide survey revealed that as many as 389 bridges in the state of Arkansas are comprised of these members. Notably, beams within these bridges were designed under provisions that did not require shear reinforcement. In this research, four sections were retrofitted using carbon fiber-reinforced polymer (CFRP) strips and load tested to failure to measure the repair effectiveness. The performance of the retrofitted sections far exceeded that of unretrofitted sections. It was concluded that the addition of the CFRP repair increased the deflection ductility at least 123%. In addition, beams retrofitted with the CFRP strips experienced at least 26% more deflection after the initiation of a shear crack; therefore reducing the risk of a catastrophic failure.  相似文献   

13.
The environmental load of fiber-reinforced polymer (FRP) reinforced pavement was compared with that of steel reinforced pavement. Replacing steel rebars with FRP rebars can lead to changes in the concrete mix and pavement structure at the erection stage, to a reduced need for maintenance activities related to steel corrosion, and to different recycling opportunities at the disposal stage. The current study examined all of these variables. The environmental load of FRP reinforced pavement was found to be significantly lower than that of steel reinforced pavement. This results mainly from the fact that FRP reinforced pavement requires less maintenance, its cement content and concrete cover over reinforcement can be reduced, and the reinforcement itself generates a smaller environmental load.  相似文献   

14.
Hollow core reinforced concrete columns are generally preferred in use to decrease the cost and weight/stiffnesss ratio of members, such as bridge columns and piles. With a simplified stress state assumption, strengthening a hollow core reinforced concrete column with fiber-reinforced polymer (FRP) wrapping provides a biaxial confinement to the concrete, which leads to a need of defining the effect of FRP wrapping on the strength and ductility of the hollow core reinforced concrete columns. In this study, two groups of four hollow core reinforced concrete columns (205?mm outer diameter, 56?mm hollow core diameter, and 925?mm height) were tested under concentric, eccentric (25 and 50?mm eccentricity) and bending loads to observe the effect of carbon FRP (CFRP) wrapping. All the columns had internal steel reinforcement. Half of the columns had three layers of circumferential CFRP wrapping, whereas the other half had no external confinement. Axial load-bending moment (P–M) diagrams of each group were drawn using the obtained experimental results for both groups. It was observed that, CFRP wrapped columns had higher load and moment carrying capacities than the other group. An analytical model is proposed for drawing the P–M diagram of CFRP wrapped hollow core reinforced concrete columns.  相似文献   

15.
This paper presents the results of an experimental study to investigate the role of each layer of reinforcement on the behavior of concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars. Four full-scale concrete deck slabs of 3,000?mm length by 2,500?mm width and 200?mm depth were constructed and tested in the laboratory. One deck slab was reinforced with top and bottom mats of glass FRP bars. Two deck slabs had only a bottom reinforcement mat with different reinforcement ratios in the longitudinal direction, while the remaining deck slab was constructed with plain concrete without any reinforcement. The deck slabs were supported on two steel girders spaced at 2,000?mm center to center and were tested to failure under a central concentrated load. The three reinforced concrete slabs had very similar behavior and failed in punching shear mode at relatively high load levels, whereas the unreinforced slab behaved differently and failed at a very low load level. The experimental punching capacities of the reinforced slabs were compared to the theoretical predictions provided by ACI 318-05, ACI 440.1R-06, and a model proposed by the writers. The tests on the four deck slabs showed that the bottom transverse reinforcement layer has the major influence on the behavior and capacity of the tested slabs. In addition, the ACI 318-05 design method slightly overestimated the punching shear strength of the tested slabs. The ACI 440.1R-06 design method yielded very conservative predictions whereas the proposed method provided reasonable yet conservative predictions.  相似文献   

16.
The use of fiber-reinforced polymer (FRP) grid reinforcement for concrete slabs has been investigated, considering the behavior of the slabs in one-way bending and under concentrated loading. The behavior under the latter loading type will be considered in this second part of a two-part paper. From the performed punching tests and the analysis, a fairly strong interaction between shear and flexural effects was noted for most of the tested slabs. For the FRP-reinforced slabs with an increased reinforcement ratio or an increased slab depth (needed to fulfill the serviceability criteria in bending), the punching strength was similar to or higher than the tested steel-reinforced reference slabs. For most slabs, slip of the bars occurred resulting in higher deflections at failure. The calculation of the punching failure load according to empirical-based models (from different codes), a modified mechanical model, and an analytical model is evaluated.  相似文献   

17.
The results of testing two simply and three continuously supported concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars are presented. The amount of GFRP reinforcement was the main parameter investigated. Over and under GFRP reinforcements were applied for the simply supported concrete beams. Three different GFRP reinforcement combinations of over and under reinforcement ratios were used for the top and bottom layers of the continuous concrete beams tested. A concrete continuous beam reinforced with steel bars was also tested for comparison purposes. The experimental results revealed that over-reinforcing the bottom layer of either the simply or continuously supported GFRP beams is a key factor in controlling the width and propagation of cracks, enhancing the load capacity, and reducing the deflection of such beams. Comparisons between experimental results and those obtained from simplified methods proposed by the ACI 440 Committee show that ACI 440.1R-06 equations can reasonably predict the load capacity and deflection of the simply and continuously supported GFRP reinforced concrete beams tested.  相似文献   

18.
Use of carbon fiber reinforced polymers (CFRP) reinforcement for prestressing concrete structures introduces a promising solution for deterioration of concrete structures due to corrosion of steel reinforcements. Due to the low elastic modulus and limited strain at failure of CFRP reinforcement, partial prestressing could be the most appropriate approach to enhance deformability and reduce the cost in comparison to fully prestressed concrete structures. For members reinforced or prestressed with fiber reinforced polymers reinforcements, serviceability requirements may be the governing criteria for the design; therefore, deflection under service loading conditions should be well defined. This paper introduces simplified methods to calculate the deflection of beams prestressed by CFRP reinforcement under short-term and repeated loading. It also examines the applicability of current approaches available to calculate the deflection. Based on an experimental program undertaken at the University of Manitoba, bond factors are introduced to account for tension stiffening of concrete beams prestressed by CFRP. A procedure to determine the location of the centroidal axis of cracked prestressed sections is also proposed. The proposed methods for deflection calculation are calibrated using the results obtained from different experimental programs. Design guidelines are proposed to predict the deflection of beams partially prestressed by CFRP reinforcement.  相似文献   

19.
To improve the fiber-reinforced polymer (FRP)/concrete bond capacity, this paper presents a new anchoring approach with the gluing of precast fiber-reinforced cementitious composites (FRCC) plate on top of the FRP sheets. In order to measure the improvement in ultimate load and deformation capacity and to study the failure mechanisms around the anchored area, the direct shear bond test is performed on concrete prisms with bonded FRP. Several sets of tests have been carried out with anchoring plates of different FRCC compositions and lengths. Comparison with the control sample shows that the installation of FRCC plate can significantly increase both the bond and deformation capacities (by up to 100%). On the basis of the shear bond test, two types of FRCC plate materials were found to be particularly effective and were selected for strengthening of beam members to be tested under four-point bending. Comparison with control members (without anchor) and those with conventional U-shaped FRP anchors indicates that both the ultimate load and central deflection can be improved by the new anchoring method.  相似文献   

20.
Increasing interest in the use of fiber-reinforced polymer (FRP) reinforcement for reinforced concrete structures has made it clear that insufficient information about the shear performance of such members is currently available to practicing engineers. This paper summarizes the results of 11 large shear tests of reinforced concrete beams with glass FRP (GFRP) longitudinal reinforcement and with or without GFRP stirrups. Test variables were the member depth, the member flexural reinforcement ratio, and the amount of shear reinforcement provided. Results showed that the equations of the Canadian CSA shear provisions provide conservative estimates of the shear strength of FRP-reinforced members. Recommendations are given along with a worked example on how to apply these provisions including to members with FRP stirrups. It was found that members with multiple layers of longitudinal bars appear to perform better than those with a single layer of longitudinal reinforcing bars. Overall, it was concluded that the fundamental shear behavior of FRP-reinforced beams is similar to that of steel-reinforced beams despite the brittle nature of the reinforcement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号