首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dense TiC–Al2O3–Al composite was prepared with Al, C and TiO2 powders by means of electric field-activated combustion synthesis and infiltration of the molten metal (here Al) into the synthesized TiC–Al2O3 ceramic. An external electric field can effectively improve the adiabatic combustion temperature of the reactive system and overcome the thermodynamic limitation of reaction with x < 10 mol. Thereby, it can induce a self-sustaining combustion synthesis process. During the formation of Al2O3–TiC–Al composite, Al is molten first, and reacted with TiO2 to form Al2O3, followed by the formation of TiC through the reaction between the displaced Ti and C. Highly dense TiC–Al2O3–Al with relative density of up to 92.5% was directly fabricated with the application of a 14 mol excess Al content and a 25 V cm−1 field strength, in which TiC and Al2O3 particles possess fine-structured sizes of 0.2–1.0 μm, with uniform distribution in metal Al. The hardness, bending strength and fracture toughness of the synthesized TiC–Al2O3–Al composite are 56.5 GPa, 531 MPa and 10.96 MPa m1/2, respectively.  相似文献   

2.
Thin films of the aluminum oxide (Al2O3)–titanium oxide (TiO2) system including Al2O3, TiO2, and Al2O3/TiO2 were prepared by radio-frequency (r.f.) magnetron sputtering using ceramic targets of Al2O3, TiO2, and Al2O3/TiO2 composites with different Al2O3/TiO2 ratio. These films were studied at different substrate temperatures, r.f. powers, and annealing temperatures. Composition, microstructure, thermomechanical property of internal stress, and mechanical property of scratch adhesion, were evaluated. A thin film with a dielectric constant of 62 and a loss tangent of 0.012 was obtained at 500 °C from a 10/90 target. This thin film remained the high dielectric constant of TiO2, but had an improvement in the dielectric loss tangent. Al2O3-containing films had a higher resistivity and breakdown field, which was improved further by annealing. Optical properties, such as refractive index and optical transmittance, were also investigated.  相似文献   

3.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

4.
Ferroelectric SrBi2Ta2O9/SrBi2Nb2O9 (SBT/SBN) multilayer thin films with various stacking periodicity were deposited on Pt/TiO2/SiO2/Si substrate by pulsed laser deposition technique. The X-ray diffraction patterns indicated that the perovskite phase was fully formed with polycrystalline structure in all the films. The Raman spectra showed the frequency of the O–Ta–O stretching mode for multilayer and single layer SrBi2(Ta0.5Nb0.5)2O9 (SBNT) samples was 827–829 cm−1, which was in between the stretching mode frequency in SBT (813 cm−1) and SBN (834 cm−1) thin films. The dielectric constant was increased from 300 (SBT) to 373 at 100 kHz in the double layer SBT/SBN sample with thickness of each layer being 200 nm. The remanent polarization (2Pr) for this film was obtained 41.7 μC/cm2, which is much higher, compared to pure SBT film (19.2 μC/cm2). The coercive field of this double layer film (67 kV/cm) was found to be lower than SBN film (98 kV/cm).  相似文献   

5.
The electrical and dielectric properties of reactively sputtered Ta2O5 thin films with Cu as the top and bottom electrodes forming a simple metal insulator metal (MIM) structure, Cu/Ta2O5/Cu/n-Si, were studied. Ta2O5 films subjected to rapid thermal annealing (RTA) at 800°C for 30 s in N2 ambient crystallized the film, decreased the leakage current density and resulted in reliable time-dependent dielectric breakdown characteristics. The conduction mechanism at low electric fields (<100 kV/cm) is due to Ohmic conduction; however, the Schottky mechanism becomes predominant at high fields (>100 kV/cm). Present studies demonstrate the use of Cu as a potential electrode material to replace the conventional precious metal electrodes for Ta2O5 storage capacitors.  相似文献   

6.
Joining of bulk ceramics by plastic flow has been demonstrated for several fine-grained ceramics. We have joined, for example, submicrometer 3 mol% Y2O3 partially stabilized ZrO2 (YSZ) and YSZ-toughened Al2O3. The interlayers in these cases consisted of dense, submicrometer-grain-sized pieces of ceramics that have been shown to exhibit superplastic flow. We have extended the joining work to include incorporation of 15 vol.% SiC or 20 vol.% TiC whiskers within the bond layer. Unlike YSZ/Al2O3, because of the presence of the whiskers, YSZ/Al2O3/SiC and YSZ/Al2O3/TiC do not deform superplastically. However, virtually perfect YSZ/Al2O3 joints with and without whiskers could be made by compressing at 1300–1350 °C and stresses of <20 MPa.  相似文献   

7.
Photo-enhanced chemical (PEC) wet etching technology was used to etch GaN and AlGaN epitaxial layers. It was found that the maximum etch rates were 510, 1960, 300, and 0 nm/mm for GaN, Al0.175Ga0.825N, Al0.23Ga0.77N, and Al0.4Ga0.6N, respectively. It was also found that we could achieve a high Al0.175Ga0.825N to GaN etch rate ratio of 12.6. Nitride-based Schottky diodes and heterostructure field effect transistors (HFETs) were also fabricated by PEC wet etching. It was found that we could achieve a saturated ID larger than 850 mA/mm and a maximum gm about 163 mS/mm from PEC wet etched HFET with a 0.5 μm gate length. Compared with dry etched devices, the leakage currents observed from the PEC wet etched devices were also found to be smaller.  相似文献   

8.
This work proposes a multi-composition oxidation resistant coating for SiC-coated carbon/carbon (C/C) composites by slurry method using the mixture of Y2O3, ZrO2, Al2O3, Si and C. XRD analysis shows that the phases of the composite coating are composed of SiC, Al2O3, Y2O3, ZrO2, Al4SiC4 and Y3Al2(AlO4)3. SEM analysis of the cross section of the coating displays the microstructure with 500 μm thickness which filled the porous SiC. Oxidation test shows that, after 19 h oxidation in air at 1873 K, the weight loss of the coated SiC-C/C is only 1.76%. The oxidation of the coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks and bubble holes in the coating.  相似文献   

9.
The adhesion of electrolessly deposited Ni(P) on alumina ceramic substrates which were coated with thin SiO2, SnO2, TiO2, Al2O3, Y2O3, ZrO2 and (In,Sn)Ox (ITO) films was studied. The adhesion was measured with the aid of the 90° peel test. Strong adhesion of Ni(P) was found for the substrates with ZrO2 and Al2O3 coatings and weak adhesion for the substrates with SiO2, TiO2, SnO2, Y2O3 and ITO coatings. The fracture path and the type of interfacial bonding were analysed using scanning electron microscopy, energy-dispersive analysis of X-rays and X-ray photoelectron spectroscopy. In the case of the strongly adhering samples, fracture took place through the metal layer and along the interface. In the case of the weakly adhering samples only interfacial failure was observed between the Ni(P) layer and the metal oxide coating. Cross-section transmission electron microscopy studies of the interfaces suggested that the differences in peel energy values are caused by differences in micromechanical interlocking at the metal oxide-Ni(P) interface. In addition, a weak boundary layer which was found to be present at the Ni(P)-alumina interface was absent in the case of the strongly adhering samples with the ZrO2 substrate coating.  相似文献   

10.
本研究在ZrO2基体表面涂覆一薄层Al2O3涂层, 利用基体与涂层之间热膨胀系数不匹配, 在Al2O3-ZrO2预应力陶瓷(简称ACZS预应力陶瓷)表层引入压应力。采用维氏压痕法评价残余应力对ACZS预应力陶瓷的表层和基体中裂纹扩展阻力的影响。理论分析结合实验结果表明: 表层的压应力使得ACZS预应力陶瓷的裂纹扩展阻力增大, 最终导致强度和损伤容限提高; 且ACZS预应力陶瓷表层的压应力和裂纹扩展阻力随着基体截面积与涂层截面积比值的增加而增大。当ZrO2基体表层的Al2O3涂层厚度为40 μm时, 表层压应力使ACZS预应力陶瓷的弯曲强度达到(1207±20) MPa, 相比于同种工艺下制备的ZrO2陶瓷强度提高了32%, 同时也是Al2O3强度的3倍。此外, ACZS预应力陶瓷也表现出很好的抗热震性能。  相似文献   

11.
Titanium dioxide was obtained in its pure form (TiO2) and in the presence of urea (u-TiO2) and thiourea (t-TiO2) using the sol–gel technique. The obtained powders were characterized by BET surface area analysis, Infrared Spectroscopy, Diffuse Reflectance Spectroscopy and the Rietveld refinement of XRD measurements. All the prepared catalysts show high anatase content (>99%). The a and b-cell parameters of anatase increase in the order TiO2 < u-TiO2 < t-TiO2, while the c-parameter presents the opposite trend. Because of the interplay in cell dimensions, the cell grows thicker and shorter when prepared in the presence of urea and thiourea, respectively. The cell volume decreases in the order t-TiO2 > u-TiO2 > TiO2. The photocatalytic activities of the samples were determined on flumequine under solar-simulated irradiation. The most active catalysts were u-TiO2 and t-TiO2, reaching values over 90% of flumequine degradation after 15 min irradiation, compared with values of 55% for the pure TiO2 catalyst. Changing simultaneously the catalyst amount (t-TiO2) and pH, multivariate analysis using the response surface methodology was used to determine the roughly optimal conditions for flumequine degradation. The optimized conditions found were pH below 7 and a catalyst amount of 1.6 g L−1.  相似文献   

12.
This study reports a new, simple and effective pre-calcined method for fabrication BaO–TiO2–B2O3–SiO2 low temperature co-fired ceramics (LTCC) at a sintering temperature below 900 °C, and with dielectric losses (tan δ) lower than 2 × 10−3. The research results have shown that the addition of 2–5 wt% Al2O3 could easily eliminate the porosity of the glass-ceramics because of the excellent wetting behavior between alumina and the BaO–B2O3–SiO2 glass liquid phase in the low temperature co-fired ceramic system.  相似文献   

13.
Tantalum oxide films have been deposited by 355 nm pulsed laser ablation of metallic Ta target in O3/O2 ambient. The structure and the composition of as-deposited and annealed films were examined by X-ray diffraction and Fourier transform infrared spectroscopy. The measurements of the current–voltage and capacitance–voltage characteristics of the Al/Ta2O5/Si capacitors were performed to reveal the electrical properties of the Ta2O5 films. The effects of annealing temperature on the characteristics of thin films have been studied. The results suggest that the films annealed above 700°C have the structure of orthorhombic β-Ta2O5, thc annealing treatment at high temperature decreases the bulk trap charge, the border trap, and the interface trap densities of as-deposited films, and improves significantly the dielectric and electrical properties of Ta2O5 film.  相似文献   

14.
以Al2O3为背层(硅溶胶为粘结剂), 电熔BaZrO3作为面层材料(钇溶胶为粘结剂), 1550℃烧结后制成50 mm×25 mm×5 mm的Al2O3/BaZrO3双陶瓷试样。通过光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和EDS等手段观察了BaZrO3层和Al2O3/BaZrO3界面的显微结构, 研究了BaZrO3与Al2O3的界面反应。结果表明, 面层由BaZrO3基体和分布其上的大小10 μm左右的Y稳定的ZrO2晶粒组成; Al2O3/BaZrO3界面发生反应形成厚约300 μm的过渡层, 界面反应生成物有BaOAl2O3、ZrO2和BaO·Al2O3·2SiO2。界面从单纯的BaZrO3/Al2O3双陶瓷结构演变为BaZrO3、ZrO2、BaO·Al2O3、BaO·Al2O3·2SiO2和Al2O3等多种物相组成的复杂结构。反应过程中Al元素基本不迁移扩散, BaZrO3中Ba元素向Al2O3所在的位置扩散形成BaO·Al2O3, 残留物形成一层条状ZrO2, 而BaO·Al2O3·2SiO2围绕着EC95(Al2O3+5%SiO2)粉体颗粒周围生成。  相似文献   

15.
Ta2O5 thin films were deposited onto monocrystalline silicon surfaces by magnetron reactive sputtering. When the Ta2O5 films are employed as antireflection coatings, the reflectance of the original silicon surface diminishes from about 30% to approximately 3%. At the same time, a very low absorption coefficient (less than 103 cm-1) for the Ta2O5 films below their fundamental absorption edge (hv < 4.2 eV) is obtained from reflectance and transmittance spectra of Ta2O5 deposited onto quartz substrates. Finally, the technique of reactive sputtering is considered from the point of view of preparing antireflection coatings for solar cells.  相似文献   

16.
This paper presents the optical absorption and luminescence properties of Er3+ doped mixed alkali borosilicate glasses: 59.5SiO2 · 20B2O3 · xLi2O · (20 − x)Na2O · 0.5Er2O3 and 59.5SiO2 · 20B2O3 · xLi2O · (20 − x)K2O · 0.5Er2O3, with x = 0, 4, 8, 12, 16 and 20 mol%. The variations of Judd–Ofelt intensity parameters (Ω2, Ω4, and Ω6), hypersensitive transition intensities, total radiative transition probability (AT), radiative lifetimes (τR), integrated absorption cross-sections (Σ) and stimulated emission cross-sections (σp) as a function of x are discussed in detail. The changes in Ω2 and intensities of hypersensitive transitions are attributed to optical basicity changes in the host glass matrix, which leads to variations in the covalency of the Er–O bond. The luminescence properties are reported for certain transitions, and the emission cross-section is high at x = 8–12 in the case of lithium sodium glass, whereas in lithium potassium glass it is high at x = 8.  相似文献   

17.
Atmospheric pressure metal organic chemical vapor deposition (AP-MOCVD) was used to prepare iron doped titanium dioxide thin films. Thin films, between 40 and 150 nm thick, were deposited on Si, SiO2 and Al2O3 substrates using titanium tetra isopropoxide and ferrocene as metal organic precursors. TiO2 iron doping was achieved in the range of 1–4 at.%. The film morphology and thickness, polycrystalline texture and doping content were studied using respectively scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The influence of growth temperature, deposition time, substrate type and dopant partial pressure were studied. Electrical characterizations of the films were also performed.  相似文献   

18.
We report on the experimental results of frequency dependent a.c. conductivity and dielectric constant of SrTiO3 doped 90V2O5–10Bi2O3 semiconducting oxide glasses for wide ranges of frequency (500–104 Hz) and temperature (80–400 K). These glasses show very large dielectric constants (102–104) compared with that of the pure base glass (≈102) without SrTiO3 and exhibit Debye-type dielectric relaxation behavior. The increase in dielectric constant is considered to be due to the formation of microcrystals of SrTiO3 and TiO2 in the glass matrix. These glasses are n-type semiconductors as observed from the measurements of the thermoelectric power. Unlike many vanadate glasses, Long's overlapping large polaron tunnelling (OLPT) model is found to be most appropriate for fitting the experimental conductivity data, while for the undoped V2O5–Bi2O3 glasses, correlated barrier hopping conduction mechanism is valid. This is due to the change of glass network structure caused by doping base glass with SrTiO3. The power law behavior (σac=A(ωs) with s<1) is, however, followed by both the doped and undoped glassy systems. The model parameters calculated are reasonable and consistent with the change of concentrations (x).  相似文献   

19.
This work reports the extraction of oxide traps properties of n-metal–oxide–semiconductor field-effect transistors with W × L = 0.5 × 0.1 μm2 using random telegraph signals (RTS) techniques. RTS study of nc-Si has been performed on thin tunnel oxides from 0.8 to 2.0 nm. RTS signals were two or more levels switching events observed on the drain current of transistors with and without nc-Si. The simple two levels RTS1 noise was observed on samples without nc-Si. On transistors with nc-Si we distinguish two different RTSs (RTS2 and RTS3). RTS signal variations with temperature have shown that there's three slow interfacial traps located at Ec — 0.26 eV (trap1), Ec — 0.23 eV (trap2) and Ec — 0.2 eV (trap3). The spatial localization of traps 1, 2 and 3 from the Si–SiO2 interface are determined using numerical simulations (xTrap1 ≈ 0.6 nm, xTrap2 ≈ 0.8 nm and xTrap3 ≈ 0.4 nm). RTS noise observed on these devices is attributed to traps localized precisely at the interface thermal oxide/deposited control oxide. (RTS1) noise is attributed to trap1 and (RTS2, RTS3) to traps 2 and 3. From RTS analysis in frequency domain, we extract the power spectrum density of the drain current noise (PSD). From these PSDs we have measured the cut-off frequencies of a single trap even at very low frequencies (for RTS1 noise fc = 5 Hz (trap1) and for RTS2 noise fc1 = 2 Hz (trap2), fc2 = 130 Hz (trap3)). These results are in good agreement with those obtained by analysis in time domain and confirm the localization of each trap from the Si–SiO2 interface.  相似文献   

20.
对通过热压烧结法制备的3种陶瓷99.5vol%Al2O3(AD995)、ZrO2(15vol%)/Al2O3和ZrO2(25vol%)/Al2O3的力学性能和增韧机制进行了实验和理论研究。基于复合材料细观力学理论并考虑ZrO2的相变特性,建立了描述ZrO2/Al2O3陶瓷力学性能的本构模型。结果表明:ZrO2的加入细化了基体Al2O3晶粒,ZrO2/Al2O3陶瓷的致密性得到提高;3种陶瓷试件的破坏呈现小变形到脆性破坏的特点,压缩加载下试件应力-应变曲线近似为线性关系;AD995陶瓷的断裂韧性为5.65 MPa·m1/2,ZrO2(25vol%)/Al2O3陶瓷的断裂韧性为8.42 MPa·m1/2,提高了近50%;随ZrO2增韧相含量的增加,ZrO2/Al2O3陶瓷的弹性模量降低而断裂韧性增加,这一变化趋势与实验结果有良好的一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号