首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A flip-chip assembly is an attractive scheme for use in high performance and miniaturized microelectronics packaging. Wafer bumping is essential before chips can be flip-bonded to a substrate. Wafer bumping can be used for mechanical-single point stud bump bonding (SBB), and is based on conventional thermosonic wire bonding. This work proposes depositing a titanium barrier layer between the copper film and the silver bonding layer to achieve perfect bondability and sufficiently strong thermosonic bonding between a stud bump and the copper pad.A titanium layer was deposited on the copper pads to prevent copper atoms from out-diffusing during thermosonic stud bump bonding. A silver film was then deposited on the surface of the titanium film as a bonding layer to increase the bondability and bonding strength for stud bumps onto copper pads. The integration of the silver bonding layer with a diffusion barrier layer of titanium on the copper pads yielded 100% bondability between the stud bump and pads. The strength of bonding between the gold bumps on the copper pads significantly exceeds the minimum average values in JEDEC specifications. The diffusion barrier layer of titanium effectively prevents copper atoms from out-diffusing to the silver bonding layer surface during thermosonic bonding, which fact can be interpreted with reference to the experimental results of energy dispersive spectrometry (EDS) and analyses of Auger depth profiles. This diffusion barrier layer of titanium efficiently provides perfect bondability and sufficiently strong bonding between a stud bump and copper pads with a silver bonding layer.  相似文献   

2.
Thermosonic flip-chip bonding process with a nonconductive paste (NCP) was employed to improve the processability and bonding strength of the flip-chip onto flex substrates (FCOF). A non-conductive paste was deposited on the surface of the copper electrodes over the flex substrate, and a chip with eight gold bumps bonded onto the copper electrodes by the thermosonic flip-chip bonding process.For the chips and flex substrates assembly, ultrasonic power is important in the removal of some of the non-conductive paste on the surface of copper electrodes during thermosonic bonding. Accordingly, gold stud bumps in this study were directly bonded onto copper electrodes to form successful electrical paths between chips and the flex substrate. A particular ultrasonic power resulted in some metallurgical bonding between the gold bumps and the copper electrodes, increasing the bonding strength. The ultrasonic power was not only to remove the NCP from the copper electrodes, but also formed metallurgical bonds during the thermosonic flip-chip bonding process with NCP.In this study, the parameters of the bonding of chips onto flex substrates using thermosonic flip-chip bonding process with NCP were a bonding force of 4.9 N, a curing time of 40 s, a curing temperature of 140 °C and an ultrasonic power of 14.46 W. The processability and bonding strength of flip-chips on flex substrates using thermosonic bonding process with NCP was verified in this study. This process has great potential to be applied to the packaging of consumed electronic products.  相似文献   

3.
This study investigates the reliability of the assembly of chips and flex substrates using the thermosonic flip-chip bonding process with non-conductive paste (NCP). The high-temperature storage (HTS) test, the temperature cycling test (TCT), the pressure cooker test (PCT) and the high-temperature/high-humidity (HT/HH) test were conducted to examine the reliability of chips that are bonded on flex substrates. The environmental parameters used in the various reliability tests were consistent with the JEDEC standards. After the reliability tests, a peeling test was performed and the microstructure of the tested specimen observed to evaluate further the reliability.The bonding strength increased with the storage period in the HTS test. After the peeling test, a layer of copper electrodes was observed to be stuck on gold bumps over the fractured morphology of the chips when the chips and flex substrates were assembled using an ultrasonic power of 14.46 W, indicating that the bonding strength between the gold bumps and the copper electrodes was even higher than the adhesive strength of the layers that were deposited on the flex substrates. The HTS test yielded sufficient thermal energy to promote atomic interdiffusion between gold bumps and copper electrodes. Metallurgical bonding between the gold bump and the copper electrode occurred, improving the bonding strength. In the assembly of chips and flex substrates without the application of ultrasonic power in bonding process, the adhesive strength of NCP was highly reliable after HTS test, because the bonding strength was maintained after HTS test for various storage periods. The typical failure mode of PCT was interfacial delamination between NCP and flex substrates. Approximately 80% of the specimens exhibited full separation after PCT at 336 h when chips and flex substrates were assembled without applied ultrasonic power to the bonding process, revealing that the NCP cannot withstand the PCT and lost its adhesive strength. Applying an adequate ultrasonic power of 14.46 W in the bonding process not only improved the bonding strength, but also enabled the bonding strength to be maintained at high level after PCT. The high bonding strength was attributable to the strong bonding of the gold bumps on the copper electrodes after PCT for various storage periods. This experimental result demonstrates that ultrasonic power can increase the reliability of PCT on chips and flex substrates that were assembled with the NCP. The bonding strength of the gold bumps on the flex substrates did not change significantly after the TCT, revealing the great reliability of TCT on chips and flex substrates that were assembled using the thermosonic flip-chip bonding process with the NCP. The bonding strength of chips bonded to flex substrates increased with the storage periods of the HT/HH test if ultrasonic power was applied to bonding process. Neither delamination nor any defect at the bonding interface was observed. The reliability of the HT/HH test for chips bonded on flex substrates using the thermosonic flip-chip process with the NCP fulfills the requirements stated in the JEDEC standards.According to the experimental findings of various reliability tests, the chips that were bonded to flex substrates using the thermosonic bonding process with NCP met the JEDEC specifications; with the exception of the adhesive strength of NCP under PCT which must be improved.  相似文献   

4.
A copper pad oxidizes easily at elevated temperatures during thermosonic wire bonding for chips with copper interconnects. The bondability and bonding strength of a gold wire onto a bare copper pad are seriously degraded by the formation of a copper oxide film. A new bonding approach is proposed to overcome this intrinsic drawback of the copper pad. A silver layer is deposited as a bonding layer on the surface of copper pads. Both the ball-shear force and the wire-pull force of a gold wire bonded onto copper pads with silver bonding layers far exceed the minimum values stated in the JEDEC standard and MIL specifications. The silver bonding layer improves bonding between the gold ball and copper pads. The reliability of gold ball bonds on a bond pad is verified in a high-temperature storage (HTS) test. The bonding strength increases with the storage time and far exceeds that required by the relevant industrial codes. The superior bondability and high strength after the HTS test were interpreted with reference to the results of electron probe x-ray microanalyzer (EPMA) analysis. This use of a silver bonding layer may make the fabrication of copper chips simpler than by other protective schemes.  相似文献   

5.
To improve the bondability and ball-shear force of gold balls that are thermosonically bonded to copper electrodes over flex substrates, a nickel layer was deposited on the surface of the copper electrodes to increase their rigidity. A silver layer was then deposited on the nickel layer to prevent oxidation of the copper electrodes during the thermosonic bonding process. This nickel layer was expected to enhance the rigidity of copper electrodes over the flex substrates, increasing the thermosonic bonding efficiency of gold balls to copper electrodes over the flex substrates.Deposition the nickel layer on the copper electrodes improved the elastic modulus of the flex substrates, indicating that the nickel layer is effective in enhancing the rigidity of copper electrodes over the flex substrates. The bondability and ball-shear force of gold balls that are thermosonically bonded to copper electrodes increases with the thickness of the nickel layer given fixed bonding parameters. One hundred percent bondability and high ball-shear force can be achieved when gold balls are thermosonically bonded to copper electrodes with the deposition of a 0.5 μm-thick nickel layer. Herein, the ball-shear force was higher than that specified in JEDEC standards. Furthermore, gold balls that were thermosonically bonded to copper electrodes with a nickel layer had a large bonded area with an extensive scrape, while gold balls that were thermosonically bonded to copper electrodes without a nickel layer had a blank surface morphology. This experimental result was similar to that of tests of the elastic modulus of flex substrates, similarity can be used to explain that the effectiveness of the nickel layer in increasing the rigidity of copper electrodes, increasing the bonding efficiency at the bonding interface between gold balls and copper electrodes during thermosonic bonding process. After ball-shear test, a layer that was stuck on the ball bond was observed at the location of fracture of the ball bonds for gold balls they were thermosonically boned on copper electrodes with 0.5 μm-thick nickel layer. This observation implies that the ball-shear force of the gold balls that were bonded on the copper electrodes exceeded even the adhesive force of the layers that were deposited on the copper electrodes.The deposition of a 0.5 μm-thick nickel layer on copper electrodes over flex substrates improved the rigidity of the copper electrodes; the ultrasonic power could be propagated to the bonding interface between the gold balls and the copper electrodes, increasing the bondability and ball-shear force.  相似文献   

6.
A nickel layer and a silver bonding layer have been deposited on copper electrodes over flex substrates to improve the bondability and die-shear force performance of chip?Cflex substrate assemblies when using the thermosonic flip-chip bonding process. For bonding temperature of 200°C, the maximum die-shear force was achieved by combining parameter values of 20.66?W ultrasonic power, 625?gf bonding force, and 0.5?s bonding time. The improved bondability and die-shear force could be attributed to better transfer of ultrasonic power across the bonding interface during thermosonic flip-chip bonding, owing to the high rigidity of the copper electrodes provided by the nickel layer. Experimental results also indicated that high bonding load is necessary at elevated ultrasonic power range to provide firm contact between the bumps and electrodes to enable smooth ultrasonic power transfer across the bonding interface. Moreover, prolonged bonding time caused cracks between the bumps and flex substrate. Close examination of the fracture morphologies after die-shear testing and after ultrasonic separation provided insight into the die-shear force performance as influenced by the process parameters and by the deposition of the nickel layer on the copper electrodes over the flex substrate.  相似文献   

7.
A novel thermosonic (TS) bonding process for gold wire bonded onto chips with copper interconnects was successfully developed by depositing a thin, titanium passivation layer on a copper pad. The copper pad oxidizes easily at elevated temperature during TS wire bonding. The bondability and bonding strength of the Au ball onto copper pads are significantly deteriorated if a copper-oxide film exists. To overcome this intrinsic drawback of the copper pad, a titanium thin film was deposited onto the copper pad to improve the bondability and bonding strength. The thickness of the titanium passivation layer is crucial to bondability and bonding strength. An appropriate, titanium film thickness of 3.7 nm is proposed in this work. One hundred percent bondability and high bonding strength was achieved. A thicker titanium film results in poor bond-ability and lower bonding strength, because the thicker titanium film cannot be removed by an appropriate range of ultrasonic power during TS bonding. The protective mechanism of the titanium passivation layer was interpreted by the results of field-emission Auger electron spectroscopy (FEAES) and electron spectroscopy for chemical analysis (ESCA). Titanium dioxide (TiO2), formed during the die-saw and die-mount processes, plays an important role in preventing the copper pad from oxidizing. Reliability of the high-temperature storage (HTS) test for a gold ball bonded on the copper pad with a 3.7-nm titanium passivation layer was verified. The bonding strength did not degrade after prolonged storage at elevated temperature. This novel process could be applied to chips with copper interconnect packaging in the TS wire-bonding process.  相似文献   

8.
超声倒装是近年来芯片封装领域中快速发展的一种倒装技术,具有连接强度高、接触电阻低、可靠性高、低温下短时完成和成本低的优势,特别适合较少凸点的RFID芯片封装。在镀Ni/Au铜基板上进行了RFID芯片超声倒装焊接实验,金凸点与镀Ni/Au铜基板之间实现了冶金结合,获得了良好的力学与电气性能,满足射频要求。  相似文献   

9.
This study assesses the high-temperature storage (HTS) test and the pressure-cooker test (PCT) reliability of an assembly of chips and flexible substrates. After the chips were bonded onto the flexible substrates, specimens were utilized to assess the HTS test and PCT reliability. After the PCT and HTS tests, the die-shear test was applied to examine changes in die-shear forces. The microstructure of the test specimens was analyzed to evaluate reliability and to identify possible failure mechanisms. When the duration of the HTS test was increased, the percentage of gold bumps that peeled off from the surface of the copper pads on the chip side increased, and a crack was present at the bonding interface between the gold bumps and chip bond pads. This crack was due to thermal stress generated during the HTS test, and degraded the die-shear force of the assembly of chips and flexible substrates. After the PCT, the crack was present at the interface between deposited layers of copper electrodes after the specimens were subjected to the PCT for various durations. Moisture penetrated into the deposited layers of the copper electrodes, deposited layers lost their adhesion, and the crack progressed from the corner into the central bond area as the test duration increased. To improve the PCT reliability of assemblies of chips and flexible substrates using the thermosonic flip-chip bonding process, one must prevent moisture from penetrating into deposited layers of copper electrodes and prevent crack formation at the interface between nickel and copper layers. Underfill would be an effective approach to prevent moisture from penetrating into deposited layers during the PCT, thereby improving the reliability of the samples during the PCT.  相似文献   

10.
A flip-chip bonding (FCB) method suitable for the surface acoustic wave (SAW) filter was developed. In this method, the gold-ball bumps formed on the chip are directly bonded onto the ceramic substrate by thermosonic bonding. After FCB, they are sealed with a cap without using underfill resin. To obtain high bond strength, characteristic properties of the substrate electrode and the ball bump, were optimized. Furthermore, bondability has been improved by adopting a ramp-up loading profile. The reliability test was carried out with 6-pin SAW chips, and we confirmed the sufficient reliability of bonds.  相似文献   

11.
热超声倒装焊在制作大功率GaN基LED中的应用   总被引:2,自引:0,他引:2  
设计了适合于倒装的大功率GaN基LED芯片结构,在倒装基板硅片上制作了金凸点,采用热超声倒装焊接(FCB)技术将芯片倒装在基板上.测试结果表明获得的大面积金凸点连接的剪切力最高达53.93 g/bump,焊接后的GaN基绿光LED在350 mA工作电流下正向电压为3.0 V.将热超声倒装焊接技术用于制作大功率GaN基LED器件,能起到良好的机械互连和电气互连.  相似文献   

12.
Microstructures and microtextures of the gold wire, free air ball, Au stud bumps and flip chip bonding bumps were analyzed using Electron Backscatter Diffraction (EBSD). It is demonstrated that process parameters, such as bonding power, force and temperature have significant influences on the microstructure and microtexture of gold bumps. The non-uniform deformation, the associated microstructure defects and the local textures of the Au bumps under the vertical force and the horizontal ultrasonic wave applied are presented and discussed.  相似文献   

13.
To improve the bondability and ensure the reliability of Au/Cu ball bonds of the thermosonic (TS) wire-bonding process, an argon-shielding atmosphere was applied to prevent the copper pad from oxidizing. With argon shielding in the TS wire-bonding process, 100% gold wire attached on a copper pad can be achieved at the bonding temperature of 180°C and above. The ball-shear and wire-pull forces far exceed the minimum requirements specified in the related industrial codes. In a suitable range of bonding parameters, increasing bonding parameters resulted in greater bonding strength. However, if bonding parameters exceed the suitable range, the bonding strength is deteriorated. The reliability of the high-temperature storage (HTS) test for Au/Cu ball bonds was verified in this study. The bonding strength of Au/Cu ball bonds increases slightly with prolonged storage duration because of diffusion between the gold ball and copper pad during the HTS test. As a whole, argon shielding is a successful way to ensure the Au/Cu ball bond in the TS wire-bonding process applied for packaging of chips with copper interconnects.  相似文献   

14.
结合功率型GaN基蓝光LED芯片的电极分布,在硅载体上电镀制作了金凸点,然后通过热超声倒装焊接技术将LED芯片焊接到载体硅片上.结果表明,在合适的热超声参数范围内,焊接后的功率型LED光电特性和出光一致性较好,证明了热超声倒装焊接技术是一种可靠有效的功率型光电子器件互连技术.  相似文献   

15.
A novel laser-assisted chip bumping technique is presented in which bumps are fabricated on a carrier and subsequently transferred onto silicon chips by a laser-driven release process. Copper bumps with gold bonding layers and intermediate nickel barriers are fabricated on quartz wafers with pre-deposited polyimide layers, using UV lithography and electroplating. The bumps are thermosonically bonded to their respective chips and then released from the carrier by laser machining of the polyimide layer, using light incident through the carrier. Bumps of 60 to 85 μm diameter and 50 μm height at a pitch of 127 μm have been fabricated in peripheral arrays. Parallel bonding and subsequent transfer of arrays of 28 bumps onto test chips have been successfully demonstrated. Individual bump shear tests have been performed on a sample of 13 test chips, showing an average bond strength of 26 gf per bump  相似文献   

16.
This paper describes low-temperature flip-chip bonding for both optical interconnect and microwave applications. Vertical-cavity surface-emitting laser (VCSEL) arrays were flip-chip bonded onto a fused silica substrate to investigate the optoelectronic characteristics. To achieve low-temperature flip-chip bonding, indium solder bumps were used, which had a low melting temperature of 156.7/spl deg/C. The current-voltage (I-V) and light-current (L-I) characteristics of the flip-chip bonded VCSEL arrays were improved by Ag coating on the indium bump. The I-V and L-I curves indicate that optical and electrical performances of Ag-coated indium bumps are superior to those of uncoated indium solder bumps. The microwave characteristics of the solder bumps were investigated by using a flip-chip-bonded coplanar waveguide (CPW) structure and by measuring the scattering parameter with an on-wafer probe station for the frequency range up to 40 GHz. The indium solder bumps, either with or without the Ag coating, provided good microwave characteristics and retained the original characteristic of the CPW signal lines without degradation of the insertion and return losses by the solder bumps.  相似文献   

17.
A novel three-dimensional packaging method for Al-metalized SiC power devices has been developed by means of Au stud bumping technology and a subsequent vacuum reflow soldering process with Au-20Sn solder paste. Al-metalized electrodes of a SiC power chip can be robustly assembled to a direct bonded copper (DBC) substrate with this method. The bump shear strength of a Au stud bump on an Al electrode of a SiC chip increased with bonding temperature. The die shear strength of a SiC chip on the DBC substrate increased with the number of Au stud bumps which were preformed on the Al electrode. The bonded SiC-SBD chips on a DBC substrate were aged at 250 ${^circ}{rm C}$ in a vacuum furnace and the morphologies, die shear strength and electrical properties were investigated after a certain aging time. After 1000 h aging at 250 ${^circ}{rm C}$, the electrical resistance of the bonded SiC-SBD chips only increased about 0.4%, the residual die shear strength was much higher than that of the IEC749 (or JEITA) standard value, and little morphological change was observed by a micro-focus X-ray TV system. Very little diffusion between Au stud bumps and Au-20Sn solder was observed by scanning electron microscope (SEM) equipped with an energy dispersed X-ray analyzer (EDX). Intermetallic compounds (IMC) evolved at the interface of chip/solder and chip/Au stud bumps after 1000 h aging at 250 ${^circ}{rm C}$. With this method, power devices with Al bond pads can be three-dimensionally packaged.   相似文献   

18.
This research focuses on flip chip interconnect systems consisting of wire stud bumps and solder alloy interconnects. Conventional gold (Au) wire stud bumps and new copper (Cu) wire stud bumps were formed on the chip by wire stud bumping. Cu wire studs were bumped by controlling the ramp rate of ultrasonic power to eliminate the occurrence of under-pad chip cracks that tend to occur with high strength bonding wire. Lead free 96Sn3.5Ag0.5Cu (SnAgCu) alloy was used to interconnect the wire studs and printed circuit board. A comparison was made with conventional eutectic 63Sn37Pb (SnPb) alloy and 60In40Pb (InPb) alloy. Test vehicles were assembled with two different direct chip attachment (DCA) processes. When the basic reflow assembly using a conventional pick and place machine and convection reflow was used, 30% of the lead free test vehicles exhibited process defects. Other lead free test vehicles failed quickly in thermal shock testing. Applying the basic reflow assembly process is detrimental for the SnAgCu test vehicles. On the other hand, when compression bonding assembly was performed using a high accuracy flip chip bonder, the lead free test vehicles exhibited no process defects and the thermal shock reliability improved. Cu stud-SnAgCu test vehicles (Cu-SnAgCu) in particular showed longer mean time to failure, 2269 cycles for the B stage process and 3237 cycles for high temperature bonding. The C-SAM and cross section analysis of the Cu stud bump assemblies indicated less delamination in thermal shock testing and significantly less Cu diffusion into the solder compared to Au stud bumped test vehicles. The Cu stud-SnAgCu systems form stable interconnects when assembled using a compression bonding process. Moreover, Cu wire stud bumping offers an acceptable solution for lead free assembly  相似文献   

19.
To understand the copper oxide effect on the bondability of gold wire onto a copper pad, thermosonic gold wire bonding to a copper pad was conducted at 90–200 °C under an air atmosphere. The bondability and bonding strength of the Au/Cu bonds were investigated. The bondability and bonding strength were far below the minimum requirements stated in industrial codes. At elevated bonding temperature of 200 °C, the bondability and bonding strength deteriorated mainly due to hydroxide and copper oxide formation on the copper pad. Oxide formation occurred if no appropriate oxide preventive schemes were applied. At lower bonding temperature, 90 °C, poor bondability and low bonding strength were mainly attributed to insufficient thermal energy for atomic inter-diffusion between the gold ball and copper pad.Copper pad oxidation was investigated using an electron spectroscopy for chemical analysis (ESCA) and thermogravimetric analysis (TGA). An activation energy of 35 kJ/mol for copper pad oxidation was obtained from TGA. This implies that different mechanisms govern the oxidation of copper pad and bulk copper. Hydroxide and copper oxide were identified based on the shifted binding energy. Cu(OH)2 forms mainly on the top surface of copper pads and the underlying layer consists mainly of CuO. The hydroxide concentration increased with increasing the heating temperatures. After heating at 200 °C, the hydroxide concentration on the copper pad surface was approximately six times that at 90 °C. Protective measures such as passivation layer deposition or using shielding gas are critical for thermosonic wire bonding on chips with copper interconnects.  相似文献   

20.
This paper presents a novel method in which an oxide film is used to facilitate the thermosonic wire bonding of gold wire onto copper pads. A cuprous oxide film is generated by controlling the pH values of the chemical solution. Compared to cupric oxide films, the cuprous oxide film is denser and more brittle and therefore facilitates the bonding process without the need for the elaborate procedures and equipment required by more conventional wire bonding methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号