首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different non-oxide ceramics, Si3N4 and SiC, were characterized with respect to their grain-boundary structure employing both scanning and transmission electron microscopy. The latter method, which enables one to gain direct insight of the atomistic interface structure, was utilized to verify whether grain-boundary wetting occurred. SEM imaging of plasma-etched surfaces revealed a characteristic bright contrast along interfaces for both ceramics, Si3N4 as well as SiC, suggesting the presence of an intergranular glass film. High-resolution TEM studies of the Si3N4 sample confirmed that these fine bright lines along grain boundaries represent intergranular glass films separating Si3N4 matrix grains. However, when high-resolution TEM was employed on SiC samples, which showed a similar contrast variation across SiC grain boundaries in the SEM, the presence of residual glass films was not detected. The SiC materials showed clean grain boundaries with no indication of residual glass even at triple pockets. Chemical analysis monitored yttrium and aluminum segregation at interfaces, which creates a potential barrier (space charges) and therefore affects both the inner mean potential at the interface (Fresnel fringes) and the plasma-etching response. Although SEM imaging showed a similar interface contrast for both Si3N4 and SiC ceramics, HRTEM studies clearly revealed grain-boundary wetting in the former and clean interfaces in the latter material, respectively. Hence, SEM imaging and Fresnel fringe TEM imaging alone are not conclusive when characterizing interface wetting in ceramic polycrystals.  相似文献   

2.
The rate of dissolution of β-Si3N4 into an Mg-Si-O-N glass was measured by working with a composition in the ternary system Si3N4-SiO2-MgO such that Si2N2O rather than β-Si3N4 was the equilibrium phase. Dissolution was driven by the chemical reaction Si3N4(c)+SiO2( l )→Si2N2O(c). Analysis of the kinetic data, in view of the morphology of the dissolving phase (Si3N4) and the precipitating phase (Si2N2O), led to the conclusion that the dissolution rate was controlled by reaction at the crystal/glass interface of the Si3N4, crystals. The process appears to have a fairly constant activation energy, equal to 621 ±40 kJ-mol−1, at T=1573 to 1723 K. This large activation energy is believed to reflect the sum of two quantities: the heat of solution of β-Si3N4 hi the glass and the activation enthalpy for jumps of the slower-moving species across the crystal/glass interface. The data reported should be useful for interpreting creep and densification experiments with MgO-fluxed Si3N4.  相似文献   

3.
Silicon Nitride Joining   总被引:1,自引:0,他引:1  
Hot-pressed Si3N4 was joined using an Mgo-A12O3-SiO2 glass composition chosen to approximate the oxide portion of the grain-boundary phase in the ceramic. After it has been heated at 1550° to 1650°, the interface of the joined ceramic is an interlocking mixture of Si2N2O, β-Si3N4, and a residual oxy-nitride glass. The kinetics of reactions between Si3N4 and the molten joining composition were studied by X-ray diffraction analysis of the phases present in Si3N4 powder-glass mixtures quenched after varied heat treatments. Analytical transmission electron microscopy of the composition and micro-structure of the reaction zone in joined specimens, together with the X-ray diffraction results, suggests that the driving force for joining is the lowering of the Si3N4 interfacial energy when it is wet by the molten silicate, augmented by the negative Gibbs energy for the reaction SiO2( l ) + Si3N4= 2Si2N2O.  相似文献   

4.
Interfacial microstructures in βP-Si3N4( w )-Si-Al-Y-O-N-glass systems were investigated by systematically varying the nitrogen content and the Al:Y ratio of the glass matrix. High-resolution and analytical transmission electron microscopy (HREM and AEM) studies revealed that the interfacial microstructure is a function of the glass composition. No interfacial phases were formed in glasses with low Al:Y ratios and in glasses with high Al:Y ratios and low nitrogen content, whereas epitaxial growth of an interfacial layer (100–200 μm thick) on the βP-Si3N4( w ) occurred in a glass matrix with high Al:Y ratio and high nitrogen content. The interfacial layer was identified to be a β'-SiAION phase. Interfaces containing the SiAION layer exhibited high debonding energy compared to Si3N4( w )–glass interfaces. HREM studies indicated that the lattice-mismatch strain in the SiAION layer was relieved by dislocation formation at the SiAION–Si3N4( w ) interface. The difference in interfacial debonding energy was, hence, attributed to the local atomic structure and bonding between the glass-β-Si3N4 and the glass–β'-SiAION phases. This observation was clear evidence of the strong influence of glass chemistry on the interfacial debonding behavior by altering the interfacial microstructure.  相似文献   

5.
Silicon Nitride Based Ceramic Nanocomposites   总被引:7,自引:0,他引:7  
Nanocomposites (Si3N4/SiC) were studied by combined high-resolution transmission electron microscopy and electron energy-loss spectroscopic imaging (ESI) techniques. In ESI micrographs three types of crystalline grains were distinguished: Si3N4 matrix grains (0.5 μΩ), nanosized SiC particles (<100 nm) embedded in the Si3N4, and large SiC particles (100–200 nm) at grain boundary regions (intergranular particles). Amorphous films were found both at Si3N4 grain boundaries and at phase boundaries between Si3N4 and SiC. The Si3N4 grain boundary film thickness varied from 1 to 2. 5 nm. Two kinds of embedded SiC particles were observed: type A has a special orientation with respect to the matrix, and type B possesses a random orientation with respect to the matrix. The surfaces of type B particles are completely covered by an amorphous phase. The existence of the amorphous film between the matrix and the particles of type A depends on the lattice mismatch across the interface. The mechanisms of nucleation and growth of Ω-Si3N4 grains are discussed on the basis of these experimental results.  相似文献   

6.
The nitrogen solubility in the SiO2-rich liquid in the metastable binary SiO2-Si3N4 system has been determined by analytical TEM to be 1%–4% of N/(O + N) at 1973–2223 K. Analysis of the near edge structure of the electron energy loss peak indicates that nitrogen is incorporated into the silicate network rather than being present as molecular N2. A regular solution model with a positive enthalpy of mixing for the liquid was used to match the data for the metastable solubility of N in the presence of crystalline Si3N4 and to adjust the computed phase diagram. The solubility of Si3N4 in fused SiO2 is far less than reported in liquid silicates also containing Al, Mg, and/or Y. Apparently, these cations act as modifiers that break anion bridges in the silicate network and, thereby, allow further incorporation of Si3N4 without prohibitive amounts of network cross-linking. Finally, indications emerged regarding the diffuse nature of the Si3N4-SiO2 interface that leads to amorphous regions of higher N content.  相似文献   

7.
Interface Nanostructure of Brazed Silicon Nitride   总被引:1,自引:0,他引:1  
Nanomorphologies and crystallographic orientations of the brazed interface of silicon nitride (Si3N4) were analyzed via high-resolution transmission electron microscopy. When Si3N4 was brazed using an Ag-Cu-Ti alloy, titanium nitride (TiN) nanoparticles were formed adjacent to the ceramic as reaction products, and these nanoparticles were commonly accompanied by C-phase material. The structure of Si3N4/TiN interface was wavy on an atomic scale, which was considered to provide anchoring points that offered high mechanical strength. The TiN nanoparticles extended along the [0001] axis of Si3N4. The orientation relationship between TiN and ß-Si3N4 was, as determined from the observed lattice images, that the [110] direction of TiN was parallel to the [0001] direction of Si3N4. The nature of the crystallographic relationships and interface nanomorphologies were also discussed.  相似文献   

8.
The nucleation and growth of Si3N4 on silane-derived Si powders was investigated with transmission electron microscopy and FTIR spectroscopy. Thermogravimetric analysis (TGA) was also used to monitor the process through different stages of the reaction. The FTIR and TEM results provide clear evidence that the nucleation of crystalline Si3N4 coincides with the onset of rapid nitridation. Electron diffraction indicates that Si3N4 forms heteroepitaxially on the Si powder surfaces, with Si (111) || Si3N4(0001) and Si     || Si3N4     . Also, flat interfaces between the Si and Si3N4 (compared to the initial spherical surface of the Si powders) indicate that a significant rearrangement of the particle surface occurs during the initial stages of nitridation. The results reported here demonstrate that the rapid, low-temperature nitridation observed with silane-derived powders is possible because the Si/vapor surfaces are not covered with a continuous Si3N4 product layer. The measured nitridation rates are comparable to Si evaporation rates, which suggests that Si vaporization is rate limiting. This is significantly different from conventional RBSN, where nitridation is limited by solid-state diffusion through a Si3N4 product layer.  相似文献   

9.
In Si3N4 ceramics sintered with Al2O3, the interfacial strength between the intergranular glass and the reinforcing grains has been observed to increase with increases in the aluminum and oxygen content of the epitaxial β-Si6- z Al z O z N8– z layer that forms on the Si3N4 grains. This has been attributed to the formation of a network of strong bonds (cross bonds) that span the glass-crystalline interface. This proposed mechanism is considered further in light of first-principles atomic cluster calculations of the relative stabilities of bridge and threefold-bonded atomic fragments chosen to represent compositional changes at the glass/Si3N4 grain interface. Calculated binding energies indicate Al-N binding is favorable at the Si3N4 grain surface, where aluminum occupancy can promote the growth of SiAlON, further enhancing the cross-bonding mechanism of interfacial strengthening.  相似文献   

10.
The synthesis and structure of a monodispersed spherical Si3N4/SiC nanocomposite powder have been studied. The Si3N4/SiC nanocomposite powder was synthesized by heating under argon a spherical Si3N4/C powder. The spherical Si3N4/C powder was prepared by heating a spherical organosilica powder in a nitrogen atmosphere and was composed of a mixture of nanosized Si3N4 and free carbon particles. During the heat treatment at 1450°C, the Si3N4/C powder became a Si3N4/SiC composite powder and finally a SiC powder after 8 h, while retaining its spherical shape. The composition of the Si3N4/SiC composite powder changed with the duration of the heat treatment. The results of TEM, SEM, and selected area electron diffraction showed that the Si3N4/SiC composite powder was composed of homogeneously distributed nanosized Si3N4 and SiC particles.  相似文献   

11.
Silicon oxynitride ceramics were prepared by hot-pressing an equimolar Si3N4+ SiO2 mixture with 3 mol% CeO2. The Ce2O3/SiO2 ratio of intergranular phase (liquid phase) increased as the formation of Si2N2O proceeded. The intergranular liquid remained as a glass on cooling until the Ce2O3/SiO2 ratio exceeded a certain value, at which point the liquid crystallized. There were great differences in thermal and mechanical properties and oxideation behavior between the specimen containing intergranular glassy phase and the one containing intergranular crystalline phase (Ce5(SiO4)3N–Ce4.67(SiO4)3O). The specimen containing the intergranular glassy phase showed excellent hightemperature strength and oxidation resistance.  相似文献   

12.
Grain Boundary Films in Rare-Earth-Glass-Based Silicon Nitride   总被引:2,自引:0,他引:2  
The thickness of the intergranular films in Si3N4 densified with lanthanide oxides has been systematically investigated using high-resolution transmission electron microscopy. Four lanthanide oxides—La2O3, Nd2O3, Gd2O3, and Yb2O3—as well as Y2O3 are chosen so that the results will reflect the overall trend in the effect of the lanthanide utilized. The film thicknesses increase with increasing ionic radius of the lanthanide. In addition, Si3N4 particles flocculated into isolated clusters in the lanthanide-based glasses are also characteristically separated by an amorphous film whose thickness is similar to that in the comparable polycrystalline ceramics, demonstrating that the film thickness is dictated entirely by the composition and not by the amount of the glass phase present.  相似文献   

13.
Two high-purity Si3N4 materials were fabricated by hot isostatic pressing without the presence of sintering additives, using an amorphous laser-derived Si3N4 powder with different oxygen contents. High-resolution transmission electron microscopy and electron energy-loss spectroscopy (EELS) analysis of the Si3N4 materials showed the presence of an amorphous SiO2 grain-boundary phase in the three-grain junctions. Spatially resolved EELS analysis indicated the presence of a chemistry similar to silicon oxynitride at the two-grain junctions, which may be due to partial dissolution of nitrogen in the grain-boundary film. The chemical composition of the grain-boundary film was SiNxOy, (x ∼ 0.53 and y ∼ 1.23), and the triple pocket corresponded to the amorphous SiO2 containing ∼2 wt% nitrogen. The equilibrium grain-boundary-film thickness was measured and found to be smaller for the material with the lower oxygen content. This difference in thickness has been explained by the presence of the relatively larger calcium concentration in the material with the lower amount of SiO2 grain-boundary phase, because the concentration of foreign ions has been shown to affect the grain-boundary thickness.  相似文献   

14.
The controlled crystallization of the amorphous grain boundary phase has been examined in a series of self-reinforced Si3N4 materials with added Y2O3, SrO, and CaO. The effects of time, temperature, atmosphere, glass content, glass chemistry, and matrix Si3N4 on the crystallization have been investigated. The stability of the crystallized product, the crystallization kinetics ( T-T-T curve), and crystallization mechanisms have also been examined. Crystallization produced an oxynitroapatite containing Y, Sr, and Ca over a broad range of heat-treatment conditions and glass compositions. The oxynitroapatite was compatible with Si3N4 and remained stable up to 1600°C. At low temperatures (<1350°C), the rate-limiting crystallization mechanism was oxygen diffuson in the glass, and at higher temperatures (>1350°C) the rate-limiting crystallization step changed to either the formation of new Si3N4 grains or solute diffusion in the glass.  相似文献   

15.
The effect of Si3N4, Ta5Si3, and TaSi2 additions on the oxidation behavior of ZrB2 was characterized at 1200°–1500°C and compared with both ZrB2 and ZrB2/SiC. Significantly improved oxidation resistance of all Si-containing compositions relative to ZrB2 was a result of the formation of a protective layer of borosilicate glass during exposure to the oxidizing environment. Oxidation resistance of the Si3N4-modified ceramics increased with increasing Si3N4 content and was further improved by the addition of Cr and Ta diborides. Chromium and tantalum oxides induced phase separation in the borosilicate glass, which lead to an increase in liquidus temperature and viscosity and to a decrease in oxygen diffusivity and of boria evaporation from the glass. All tantalum silicide-containing compositions demonstrated phase separation in the borosilicate glass and higher oxidation resistance than pure ZrB2, with the effect increasing with temperature. The most oxidation-resistant ceramics contained 15 vol% Ta5Si3, 30 vol% TaSi2, 35 vol% Si3N4, or 20 vol% Si3N4 with 10 mol% CrB2. These materials exceeded the oxidation resistance of the ZrB2/SiC ceramics below 1300°–1400°C. However, the ZrB2/SiC ceramics showed slightly superior oxidation resistance at 1500°C.  相似文献   

16.
A Sc2O3-MgO-Al2O3-SiO2 melt reacted with bulk pieces of hot-pressed Si3N4, dissolving Si3N4 at the surface and penetrating into the interior via the grain boundaries. During subsequent cooling, the glass phase in the Si3N4 easily crystallized and fine crystallites were formed, but no phase separation was observed. This behavior contrasts strongly with that observed for a similar melt reaction without Sc2O3.  相似文献   

17.
Impurity phases in commercial hot-pressed Si3N4 were investigated using transmission electron microscopy. In addition to the dominant, β-Si3N4 phase, small amounts of Si2N2O, SiC, and WC were found. Significantly, a continuous grain-boundary phase was observed in the ∼ 25 high-angle boundaries examined. This film is ∼ 10 Å thick between, β-Si3N4 grains and ∼ 30 Å thick between Si2N2O and β-Si3N4 grains.  相似文献   

18.
Internal interfaces in two ceramic systems, monolithic Si3N4 (SN) and TiN-dispersed Si3N4 nanocomposite (STN), were characterized by analytical transmission electron microscopy (TEM). In monolithic SN both MgO and Y2O3 dopants are preferentially hosted by the vitreous intergranular phase in pockets at triple grain junctions (TJ), whereas in STN composites the highest dopant concentrations were observed in grain and phase boundaries. The width of grain boundary films, as revealed by high-resolution TEM imaging, varied between ≈0.8 nm in monolithic SN and ≈1.0–1.2 nm in STN. Intergranular films with increased width ≈1.8 nm were detected in SN–TiN phase boundaries. Although no enrichment of Ti could be detected in the intergranular phase, it appears that the presence of TiN dispersants indirectly contributes to the intergranular phase formation. It is assumed that TiO2 impurities sitting on TiN particle surfaces react with the matrix phase, resulting in a more oxidic nature of intergranular films due to increased SiO2 supply in intergranular regions. Phase-specific Si-L2,3 energy-loss near edge structure features, which could serve as fingerprints for phase identification, were observed in spatial-difference electron energy-loss spectra from grain boundary films and TJ pockets.  相似文献   

19.
We investigated the wetting behavior and reactions of different metals on Si3N4 using sessile drop measurements, analysis of reaction layers, and measurements of strengths of joined bars. Active metals, such as Al and Ti, and alloys that contain them react with Si3N4 and cause wetting and spreading at the interface. Al-Si3N4 reaction at 900°C produced a thin layer of Al2O3 at the interface. Reaction between Si3N4 and Ag-Cu-To braze alloys at 900°C resulted in a complex microstructure in the reaction zone that contained TiN and titanium silicides. Breaking strengths of Si3N4 bars joined with the Ag-Cu-Ti braze alloys were higher than those for Si3N4 joined with Al, primarily because of the better wetting by the Ag-Cu-Ti alloys. Nonreactive metals and alloys such as Sn, In, Ag-Cu, and Ag-Cu-Sn neither wet, spread, nor adhere to Si3N4 substrates.  相似文献   

20.
Reactions of Ti which form both a silicide and a nitride after rapid thermal annealing have been characterized using Auger depth profiling, X-ray diffraction, and transmission electron microscopy. Reactions of Ti with Si annealed in a nitrogen ambient at temperatures above 700°C form a thin TiN layer on TiSi2 (C54). A similar structure is formed by annealing Ti deposited on thin Si3N4 films on Si in Ar at 1000°C. The reaction of nitrogen directly with TiSi2 begins at temperatures above 950°C, but at temperatures greater than 1050°C, TiSi2 completely reacts to form TiN. The reaction of Ti with thick Si3N4 films was studied in greater detail. At lower temperatures in Ar, mostly Ti5Si3 is formed at the interface, with some contaminant oxygen and nitrogen released from the reaction, uniformly dissolved throughout the unreacted Ti. Also, a very thin TiN layer exists at the Ti5Si3/Si3N4 interface. At higher temperatures, a three-layered structure, TiN/TiSi x /TiN/(unreacted Si3N4) develops, allowing a conducting layer to be formed on an insulator. A mechanism explaining the formation of the three-layered structure is discussed. The important reactions are the fast dissolution of nitrogen into the unreacted Ti and the thermal instability of the Ti silicide/Si3N4 interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号