共查询到13条相似文献,搜索用时 62 毫秒
1.
Pt/PTFE/泡沫SiC规整疏水催化剂可用于氢-水液相催化交换反应(Liquid-phase catalytic exchange process,LPCE)进行水去氚化(Water detritiation system,WDS)。为研究浸渍溶液对该催化剂性能的影响,以丙酮、乙二醇、无水乙醇分别配制不同的氯铂酸-有机溶液,直接浸渍具有疏水性的PTFE/泡沫SiC,250°C气相还原,从而制备Pt/PTFE/泡沫SiC规整疏水催化剂。利用X射线衍射分析(X-ray diffraction,XRD)、X射线光电子能谱分析(X-ray photoelectron spectroscopy,XPS)、透射电子显微镜(Transmission electron microscope,TEM)等表征手段分析所得催化剂的结构与组成,并研究其氢-水液相催化交换性能。三种催化剂的平均粒径分别为9.3 nm、3.6 nm、6.8 nm,乙二醇对Pt粒子有保护作用,得到的平均粒径最小。Pt存在Pt(0)、Pt(II)和Pt(IV)三种价态,氯铂酸-乙醇和氯铂酸-乙二醇制备的催化剂中0价态均为主要价态,Pt(0)比例分别为47.60%和43.97%,氯铂酸-丙酮制备的催化剂中4价态为主要价态。根据LPCE性能测试结果,氯铂酸-乙二醇制备的催化剂柱效率最高,说明催化剂中Pt(0)价态比例接近时,Pt粒子粒径大小对氢-水液相催化交换反应的影响更明显。揭示乙二醇为优选溶剂。 相似文献
2.
PTFE含量对Pt/C/PTFE疏水催化剂氢水液相催化交换性能的影响 总被引:2,自引:0,他引:2
研究采用液相还原法制备10%Pt/C催化剂,再将其与PTFE一起负载于多孔金属载体,制备Pt/C/PTFE疏水催化剂。用XRD表征Pt/C催化剂上Pt晶相结构和粒径大小,Pt粒子平均粒径为3.1nm;SEM表征PTFE与Pt/C催化剂的分散状态,二者基本混合均匀,局部地方有因未均匀分散而形成的PTFE膜。由于催化剂疏水性不够,PTFE与Pt/C质量比为0.5∶1时,Pt/C/PTFE催化剂活性较低,比例增至1∶1,催化剂活性明显增加,而继续增加PTFE比例,有更多的Pt活性位被包覆在PTFE中,同时催化剂内扩散效应增加,催化剂活性又逐渐降低。对多孔金属载体预处理,PTFE与Pt/C质量比为0.5∶1时,Pt/C/PTFE催化剂活性增加,而比例升为1∶1时,催化剂活性降低。 相似文献
3.
Pt—C—PTFE疏水性催化剂的H2O—H2同位素交换研究 总被引:7,自引:4,他引:7
本文简要介绍了Pt-C-PTFE疏水性催化剂的制备方法,采用此种催化剂进行了T-H交换实验,得到催化活性与温度、氢气流速的关系。同时对气/液并流和气/汽并流交换实验作了比较,后者活性大大高于前者。此外,在疏水性催化济中加入适量亲水性载体,可以大大提高催化剂的交换效率。 相似文献
4.
催化剂制备方法及高温还原对Pt/C/FN疏水催化剂活性的影响 总被引:1,自引:0,他引:1
采用常规浸渍还原法、改进浸渍还原法和高压微波加热法分别制备20%Pt/C催化剂,用X射线衍射(XRD)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂表征.三种方法制备的催化剂Pt粒径分别为2.9、2.0和1.9 nm,标准差分别为0.8、0.7和0.5 nm,高压微波加热法和改进浸渍还原法催化剂中Pt(0)含量分别为40.9%和43.3%.对高压微波加热法催化剂用H2/N2混合气300℃还原处理2 h,或500℃处理1 h,Pt粒径分别增至2.2和2.1姗,Pt(0)含量分别增至44.3%和49.7%.将Pt/C催化剂与聚四氟乙烯-起负载于泡沫镍(FN)载体,制备Pt/C/FN疏水催化剂,考察其对氢水液相交换反应的催化活性.影响疏水催化剂活性的因素包括Pt粒径大小及Pt(0)含量,降低Pt/C催化剂上Pt粒径大小,或提高Pt单质含量,均可提高疏水催化剂活性. 相似文献
5.
研究采用疏水陶瓷载体,分别使用水/乙醇(体积比2:1)溶液、乙醇及丙酮作为浸渍溶剂,采用浸渍-气相还原法制备用于氢水催化交换的铂/疏水陶瓷催化剂。通过X射线衍射(XRD)、扫描电镜(SEM)、H_2程序升温还原法(H_2-TPR)、光电子能谱(XPS)及CO脉冲吸附对催化剂进行综合表征,采用气液并流方式测试催化剂催化活性,研究浸渍溶剂的选择对催化剂性能的影响。水/乙醇溶剂表面张力最高,浸润疏水载体能力小于乙醇及丙酮,使得氯铂酸在载体表面分布均匀度低,造成催化剂铂粒子分散度低,高价铂还原困难,催化活性远低于使用丙酮及乙醇作为溶剂制得的催化剂。丙酮的挥发速率最快,可减少氯铂酸在载体表面团聚,制得催化剂铂粒子分散度最高,高价铂更易被还原,催化活性优于使用乙醇作为溶剂制得的催化剂。 相似文献
6.
用高压微波加热法制备了w(Pt)=10%的Pt/C催化剂,得到Pt的粒径d=(2.1±0.7) nm,再将Pt/C催化剂与聚四氟乙烯(PTFE)一起负载于泡沫镍(FN),制备疏水催化剂Pt/C/FN.用Pt/C/FN催化常温氢氧复合反应,研究了温度和H2流速对H2转化率的影响.与商用亲水催化剂Pt/Al2O3相比,Pt/C/FN催化剂活性明显更高.潮湿及干燥条件下测试了Pt/C/FN疏水催化剂的活性,潮湿条件下其活性仅有少量下降.富氧条件下考察了CO对Pt/C/FN疏水催化剂活性的影响,CO对H2转化率的影响较小. 相似文献
7.
选用五种不同孔结构疏水陶瓷载体,采用浸渍-气相还原法制备用于水-氢交换的Pt/疏水陶瓷催化剂,经X射线衍射(XRD)、扫描电子显微镜(SEM)、H_2-程序升温还原法(H_2-TPR)及CO脉冲吸附等物性表征及催化剂催化活性(以催化交换活性kya表征)测试来考察载体孔结构对催化剂性能的影响。结果表明,随着平均孔径的降低,载体比表面积增加,催化剂铂粒子分散度提高,在30~70nm平均孔径范围内,催化剂活性随载体孔径的下降而得以提升;当平均孔径小于20nm时,反应气难以在较短时间内扩散至载体孔道内,相同时间内参与反应的活性位点总数较少,从而使得其催化活性有所下降。此外,载体孔隙率过高虽有助于提升比表面积,却使得载体结构较为疏松,在催化剂制备过程中载体孔结构易被破坏,对提升催化活性无利。平均孔径为37.5nm、载体比表面积为111.01m2/g、孔隙率为68.76%的载体可获得最优的催化效果,催化剂测试用量为4.5mL、氢气流速为4.23L/min时,其催化交换活性可达6.45s~(-1)。 相似文献
8.
为验证疏水结构对催化剂性能的影响规律,研究以柱状(φ=5 mm)多孔陶瓷为载体,在载体表层构筑三种不同的氧化铈(CeO2)微纳结构为载体提供疏水环境,通过浸渍-气相还原法制得用于氢同位素分离的Pt/疏水陶瓷催化剂,以X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDX)、X光电子能谱(XPS)及一氧化碳(CO)脉冲吸附等对催化剂性能进行综合表征,并采用气汽并流方式测试催化剂催化活性。结果表明,不同疏水结构对载体孔结构及零价铂含量影响可忽略不计,对铂粒子在载体表层的富集程度及催化剂铂粒子分散度影响明显,制得的催化剂催化活性差距明显。分布均匀且对载体覆盖率高的绒毛状疏水结构可使得更多的铂粒子沉积在载体表层,可获得更优的催化活性。 相似文献
9.
为提升疏水催化剂性能并扩展其应用范围,以柱状(ø=5 mm)多孔陶瓷为载体,在载体表层构筑氧化铈(CeO2)微纳结构为载体提供疏水环境,采用浸渍还原法制备用于氢同位素交换分离的新型Pt/疏水陶瓷催化剂。为验证新型疏水催化剂实用性,以X射线衍射(XRD)、扫描电镜(SEM)、X光电子能谱(XPS)、一氧化碳(CO)脉冲吸附、能谱(EDX)对催化剂性能进行综合表征,并采用气汽并流方式测试催化剂催化活性。结果表明,新型陶瓷载体疏水性优良,疏水结构对载体孔结构性能影响较小;疏水层使浸渍液对载体浸润能力下降,铂粒子分散度及零价铂含量降低;浸润能力下降使前驱体多沉积在载体表层而较难渗入载体内部,表层铂粒子含量高,使反应物的反应通道较短,相同时间内有更多的铂粒子参与反应。制得催化剂催化活性可达同种形状有机载体类催化剂催化活性的80%,冲淋12周后,催化活性下降比率小于5%,新型疏水催化剂催化活性及耐冲淋稳定性均较好,实用性佳,具有良好的应用前景。 相似文献
10.
11.
12.
《Journal of Nuclear Science and Technology》2013,50(8):874-883
The styrene divinylbenzene copolymer (SDBC) supported platinum catalyst and the liquid phase catalytic exchange (LPCE) column have been developed to be applicable to the Wolsong tritium removal facility (WTRF) in Korea. The catalyst deactivation subject to both reversible uniform poisoning and permanent loss by impurity poisoning was investigated using a time-on-stream theory and a simplified shell progressive poisoning scenario in special case of higher internal diffusion resistance. Experimental data from fixed bed reactors with the Pt/SDBC catalysts have been used to establish the deactivation model and to estimate key parameters to be used in the WTRF LPCE column design. It was found that an impurity control in the streams would be critical to the WTRF LPCE column operation since the impurity poisoning played a very important role in the overall catalytic exchange reaction. Except for the case of the severe impurity poisoning of the whole catalysts, the LPCE column can be in operation over 10 years without any regeneration of the catalysts. 相似文献