首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L. Rebolia 《Calcolo》1973,10(3-4):245-256
The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

2.
O. G. Mancino 《Calcolo》1970,7(3-4):275-287
LetX be a point of the realn-dimensional Euclidean space ? n ,G(X) a given vector withn real components defined in ? u ,U an unknown vector withs real components,K a known vector withs real components andA a given reals×n matrix of ranks. Assuming that, for every pair of pointsX 1 , X2of ? n ,G(X) satisfies the conditions $$(G(X_1 ) - G(X_2 ), X_1 - X_2 ) \geqslant o (X_1 - X_2 , X_1 - X_2 )$$ and $$\left\| {(G(X_1 ) - G(X_2 )\left\| { \leqslant M} \right\|X_1 - X_2 )} \right\|$$ wherec andM are positive constants, we prove that a unique solution of the system $$\left\{ \begin{gathered} G(X) + A ^T U = 0 \hfill \\ AX = K \hfill \\ \end{gathered} \right.$$ exists and we show a method for finding such a solution  相似文献   

3.
We describe an extension to our quantifier-free computational logic to provide the expressive power and convenience of bounded quantifiers and partial functions. By quantifier we mean a formal construct which introduces a bound or indicial variable whose scope is some subexpression of the quantifier expression. A familiar quantifier is the Σ operator which sums the values of an expression over some range of values on the bound variable. Our method is to represent expressions of the logic as objects in the logic, to define an interpreter for such expressions as a function in the logic, and then define quantifiers as ‘mapping functions’. The novelty of our approach lies in the formalization of the interpreter and its interaction with the underlying logic. Our method has several advantages over other formal systems that provide quantifiers and partial functions in a logical setting. The most important advantage is that proofs not involving quantification or partial recursive functions are not complicated by such notions as ‘capturing’, ‘bottom’, or ‘continuity’. Naturally enough, our formalization of the partial functions is nonconstructive. The theorem prover for the logic has been modified to support these new features. We describe the modifications. The system has proved many theorems that could not previously be stated in our logic. Among them are:
  • ? classic quantifier manipulation theorems, such as $$\sum\limits_{{\text{l}} = 0}^{\text{n}} {{\text{g}}({\text{l}}) + {\text{h(l) = }}} \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{g}}({\text{l}})} + \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{h(l)}};} $$
  • ? elementary theorems involving quantifiers, such as the Binomial Theorem: $$(a + b)^{\text{n}} = \sum\limits_{{\text{l = }}0}^{\text{n}} {\left( {_{\text{i}}^{\text{n}} } \right)} \user2{ }{\text{a}}^{\text{l}} {\text{b}}^{{\text{n - l}}} ;$$
  • ? elementary theorems about ‘mapping functions’ such as: $$(FOLDR\user2{ }'PLUS\user2{ O L) = }\sum\limits_{{\text{i}} \in {\text{L}}}^{} {{\text{i}};} $$
  • ? termination properties of many partial recursive functions such as the fact that an application of the partial function described by $$\begin{gathered} (LEN X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F ({\rm E}QUAL X NIL) \hfill \\ {\rm O} \hfill \\ (ADD1 (LEN (CDR X)))) \hfill \\ \end{gathered} $$ terminates if and only if the argument ends in NIL;
  • ? theorems about functions satisfying unusual recurrence equations such as the 91-function and the following list reverse function: $$\begin{gathered} (RV X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F (AND (LISTP X) (LISTP (CDR X))) \hfill \\ (CONS (CAR (RV (CDR X))) \hfill \\ (RV (CONS (CAR X) \hfill \\ (RV (CDR (RV (CDR X))))))) \hfill \\ X). \hfill \\ \end{gathered} $$
  •   相似文献   

    4.
    R. Zanovello 《Calcolo》1967,4(4):605-613
    In this paper the Author gives a method of solving numerically the problem:
    $$\begin{gathered} y'_\lambda (x) = f(x,y_\lambda (x),\lambda ) \hfill \\ y_\lambda (x) = y_1 ,y_\lambda (x_2 ) = y_2 \hfill \\ \end{gathered} $$  相似文献   

    5.
    In this paper we study quadrature formulas of the types (1) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = C_n^{ (\lambda )} \sum\limits_{i = 1}^n f (x_{n,i} ) + R_n \left[ f \right]} ,$$ (2) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = A_n^{ (\lambda )} \left[ {f\left( { - 1} \right) + f\left( 1 \right)} \right] + K_n^{ (\lambda )} \sum\limits_{i = 1}^n f (\bar x_{n,i} ) + \bar R_n \left[ f \right]} ,$$ with 0<λ<1, and we obtain inequalities for the degreeN of their polynomial exactness. By using such inequalities, the non-existence of (1), with λ=1/2,N=n+1 ifn is even andN=n ifn is odd, is directly proved forn=8 andn≥10. For the same value λ=1/2 andN=n+3 ifn is evenN=n+2 ifn is odd, the formula (2) does not exist forn≥12. Some intermediary results regarding the first zero and the corresponding Christoffel number of ultraspherical polynomialP n (λ) (x) are also obtained.  相似文献   

    6.
    J. Rokne  T. Wu 《Computing》1983,30(3):201-211
    The centered form for real rational functions suggested by R. E. Moore [6] was extended to complex polynomials over circular complex domains in [7]. Here it is shown that the inclusion chain $$\begin{gathered} circular complex centered form evaluation \subseteq \hfill \\ Horner scheme \subseteq \hfill \\ power sum evaluation \hfill \\ \end{gathered} $$ is valid for all complex polynomials and all circular domains.  相似文献   

    7.
    F. Costabile  A. Varano 《Calcolo》1981,18(4):371-382
    In this paper a detailed study of the convergence and stability of a numerical method for the differential problem $$\left\{ \begin{gathered} y'' = f(x,y) \hfill \\ y(x_0 ) = y_0 \hfill \\ y'(x_0 ) = y_0 ^\prime \hfill \\ \end{gathered} \right.$$ has carried out and its truncation error estimated. Some numerical experiments are described.  相似文献   

    8.
    We show in this note that the equation αx1 + #x22EF; +αxp?ACβy1 + α +βyq where + is an AC operator and αx stands for x+...+x (α times), has exactly $$\left( { - 1} \right)^{p + q} \sum\limits_{i = 0}^p {\sum\limits_{j = 0}^q {\left( { - 1} \right)^{1 + 1} \left( {\begin{array}{*{20}c} p \\ i \\ \end{array} } \right)\left( {\begin{array}{*{20}c} q \\ j \\ \end{array} } \right)} 2^{\left( {\alpha + \begin{array}{*{20}c} {j - 1} \\ \alpha \\ \end{array} } \right)\left( {\beta + \begin{array}{*{20}c} {i - 1} \\ \beta \\ \end{array} } \right)} } $$ minimal unifiers if gcd(α, β)=1.  相似文献   

    9.
    M. C. Pelissier 《Calcolo》1975,12(3):275-314
    This paper deals with the numerical approximation of some «stiff» problems by asymptotic expansion of the solution. The model problem is the stationary linearized equation of slightly compressible fluids: $$\begin{gathered} \ll Find u_\varepsilon \varepsilon \left[ {H_0^1 (\Omega )} \right]^n s.t. \hfill \\ - \mu \Delta u_\varepsilon - \frac{1}{\varepsilon } grad div u_\varepsilon = f in \Omega \gg \hfill \\ \end{gathered} $$ where ∈ is asmall parameter; numerical treatment of the problem is thus difficult («stiff» problem). We establish existence and unicity of an asymptotic expansion foru, and use it to computeu. In the usual cases, with small divergence, the numerical results are far better than those obtained by direct discretisation of the problem. We also construct asymptotic expansions for the solutions of some nonlinear or non-stationary related problems.  相似文献   

    10.
    In this paper we study quadrature formulas of the form $$\int\limits_{ - 1}^1 {(1 - x)^a (1 + x)^\beta f(x)dx = \sum\limits_{i = 0}^{r - 1} {[A_i f^{(i)} ( - 1) + B_i f^{(i)} (1)] + K_n (\alpha ,\beta ;r)\sum\limits_{i = 1}^n {f(x_{n,i} ),} } } $$ (α>?1, β>?1), with realA i ,B i ,K n and real nodesx n,i in (?1,1), valid for prolynomials of degree ≤2n+2r?1. In the first part we prove that there is validity for polynomials exactly of degree2n+2r?1 if and only if α=β=?1/2 andr=0 orr=1. In the second part we consider the problem of the existence of the formula $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(x)dx = A_n f( - 1) + B_n f(1) + C\sum\limits_{i = 1}^n {f(x_{n,i} )} }$$ for polynomials of degree ≤n+2. Some numerical results are given when λ=1/2.  相似文献   

    11.
    P. Baratella 《Calcolo》1977,14(3):237-242
    In this paper we study the remainder term of a quadrature formula of the form $$\int\limits_{ - 1}^1 {f(x)dx = A_n \left[ {f( - 1) + f(1)} \right] + C_n \sum\limits_{i = 1}^n {f(x_{n,i} ) + R_n \left[ f \right],} } $$ , withx x,i -1,1, andR n [f]=0 whenf(x) is a polynomial of degree ≤n+3 ifn is even, or ≤n+2 ifn is odd. Such a formula exists only forn=1(1)11. It is shown that, iff(x)∈ C(h+1) [-1,1], (h=n+3 orn+2), thenR n [f]=f h+1 (τ)·± n . The values α n are given.  相似文献   

    12.
    F. Costabile 《Calcolo》1974,11(2):191-200
    For the Tschebyscheff quadrature formula: $$\int\limits_{ - 1}^1 {\left( {1 - x^2 } \right)^{\lambda - 1/2} f(x) dx} = K_n \sum\limits_{k = 1}^n {f(x_{n,k} )} + R_n (f), \lambda > 0$$ it is shown that the degre,N, of exactness is bounded by: $$N \leqslant C(\lambda )n^{1/(2\lambda + 1)} $$ whereC(λ) is a convenient function of λ. For λ=1 the complete solution of Tschebyscheff's problem is given.  相似文献   

    13.
    Any given n×n matrix A is shown to be a restriction, to the A-invariant subspace, of a nonnegative N×N matrix B of spectral radius (B) arbitrarily close to (A). A difference inclusion , where is a compact set of matrices, is asymptotically stable if and only if can be extended to a set of nonnegative matrices B with or . Similar results are derived for differential inclusions.  相似文献   

    14.
    We analyze the asymptotic behavior of the j-independence number of a random k-uniform hypergraph H(n, k, p) in the binomial model. We prove that in the strongly sparse case, i.e., where \(p = c/\left( \begin{gathered} n - 1 \hfill \\ k - 1 \hfill \\ \end{gathered} \right)\) for a positive constant 0 < c ≤ 1/(k ? 1), there exists a constant γ(k, j, c) > 0 such that the j-independence number α j (H(n, k, p)) obeys the law of large numbers \(\frac{{{\alpha _j}\left( {H\left( {n,k,p} \right)} \right)}}{n}\xrightarrow{P}\gamma \left( {k,j,c} \right)asn \to + \infty \) Moreover, we explicitly present γ(k, j, c) as a function of a solution of some transcendental equation.  相似文献   

    15.
    this study is a continuation of a previous paper [Computing 38 (1987), pp.117–132]. In this paper, we consider the successive overrelaxation method with projection for obtaining finite element solutions applied to the Dirichlet problem of the nonlinear elliptic equation $$\begin{gathered} \Delta u = bu^2 in\Omega , \hfill \\ u = g(x)on\Gamma . \hfill \\ \end{gathered} $$ . Some numerical examples are given to illustrate the effectiveness.  相似文献   

    16.
    The iteration $$y_{n + 1} = \sup (y_n ,x_n + x_n (e - ax_n )),x_{n + 1} = \inf (x_n ,x_n + y_{n + 1} (e - ax_n ))$$ generating sequences (x n ) and (y n ) is considered in normed, partially ordered rings. Under certain conditions it is shown, that the inversea ?1 of an elementa≧0 is monotonously enclosed and that both sequences converge toa ?1 with the order three.  相似文献   

    17.
    Given a nonempty set of functions
    where a = x 0 < ... < x n = b are known nodes and w i , i = 0,...,n, d i , i = 1,..., n, known compact intervals, the main aim of the present paper is to show that the functions and
    exist, are in F, and are easily computable. This is achieved essentially by giving simple formulas for computing two vectors with the properties
    ] is the interval hull of (the tolerance polyhedron) T; iff T 0 iff F 0. , can serve for solving the following problem: Assume that is a monotonically increasing functional on the set of Lipschitz-continuous functions f : [a,b] R (e.g. (f) = a b f(x) dx or (f) = min f([a,b]) or (f) = max f([a,b])), and that the available information about a function g : [a,b] R is "g F," then the problem is to find the best possible interval inclusion of (g). Obviously, this inclusion is given by the interval [( ,( )]. Complete formulas for computing this interval are given for the case (f) = a b f(x) dx.  相似文献   

    18.
    L. Rebolia 《Calcolo》1965,2(3):351-369
    The coefficientsA hi (m,s) and the nodesx i (m,s) for Gaussian-type quadrature formulae
    $$\int\limits_{ - 1}^1 {f(x)dx = \mathop \sum \limits_{h = 0}^{2s} \mathop \sum \limits_{i = 1}^m } A_{hi} \cdot f^{(h)} (x_i )$$  相似文献   

    19.
    Summary The k-th threshold function, T k n , is defined as: where x i{0,1} and the summation is arithmetic. We prove that any monotone network computing T 3/n(x 1,...,x n) contains at least 2.5n-5.5 gates.This research was supported by the Science and Engineering Research Council of Great Britain, UK  相似文献   

    20.
    In this paper we construct an interpolatory quadrature formula of the type $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 \frac{{f'(x)}}{{y - x}}dx \approx \sum\limits_{i = 1}^n {w_{ni} (y)f(x_{ni} )} ,$$ wheref(x)=(1?x)α(1+x)β f o(x), α, β>0, and {x ni} are then zeros of then-th degree Chebyshev polynomial of the first kind,T n (x). We also give a convergence result and examine the behavior of the quantity \( \sum\limits_{i = 1}^n {|w_{ni} (y)|} \) asn→∞.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号