首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our search for molecules involved in the process of osteoclast differentiation, we examined the surface phenotypes of the preosteoclast-like cells and osteoclast-like multinucleated cells (MNCs) formed in bone marrow cultures, using monoclonal antibodies recognizing different antigen molecules expressed on hematopoietic cells. Among these cell surface antigens, lymphocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) were highly expressed on mononuclear cells in the cultures for forming preosteoclast-like mononuclear cells. The double detection of these two antigen molecules with osteoclast-specific antigen and with calcitonin receptor, using a fluorescence-activated cell sorter or autoradiography technique, revealed that LFA-1 and ICAM-1 were expressed on the preosteoclasts. The expression of ICAM-1 was detected on both preosteoclasts and osteoclast-like MNCs, whereas the expression of LFA-1 was restricted to preosteoclasts. We designed a peptide with the sequence of the binding site of ICAM-1 against the ligand LFA-1. In the whole bone marrow culture system for forming osteoclast-like MNCs, a significant inhibition of MNC formation was observed by the addition of this peptide. These results strongly suggest the involvement of an LFA-1/ICAM-1-interaction in osteoclastogenesis.  相似文献   

2.
Osteoclasts are multinucleated cells of hemopoietic origin that are responsible for bone resorption during physiological bone remodeling and in a variety of bone diseases. Osteoclast development requires direct heterotypic cell-cell interactions of the hemopoietic osteoclast precursors with the neighboring osteoblast/stromal cells. However, the molecular mechanisms underlying these heterotypic interactions are poorly understood. We isolated cadherin-6 isoform, denoted cadherin-6/2 from a cDNA library of human osteoclast-like cells. The isolated cadherin-6/2 is 3,423 bp in size consisting of an open reading frame of 2,115 bp, which encodes 705 amino acids. This isoform lacks 85 amino acids between positions 333 and 418 and contains 9 different amino acids in the extracellular domain compared with the previously described cadherin-6. The human osteoclast-like cells also expressed another isoform denoted cadherin-6/1 together with the cadherin-6. Introduction of cadherin-6/2 into L-cells that showed no cell-cell contact caused evident morphological changes accompanied with tight cell-cell association, indicating the cadherin-6/2 we isolated here is functional. Moreover, expression of dominant-negative or antisense cadherin-6/2 construct in bone marrow-derived mouse stromal ST2 cells, which express only cadherin-6/2, markedly impaired their ability to support osteoclast formation in a mouse coculture model of osteoclastogenesis. Our results suggest that cadherin-6 may be a contributory molecule to the heterotypic interactions between the hemopoietic osteoclast cell lineage and osteoblast/bone marrow stromal cells required for the osteoclast differentiation. Since both osteoclasts and osteoblasts/bone marrow stromal cells are the primary cells controlling physiological bone remodeling, expression of cadherin-6 isoforms in these two cell types of different origin suggests a critical role of these molecules in the relationship of osteoclast precursors and cells of osteoblastic lineage within the bone microenvironment.  相似文献   

3.
The pleiotropic cytokine interleukin-11 (IL-11) stimulates osteoclast formation in vitro, but it is not known whether it influences other steps in the bone-resorptive cascade. Using a variety of in vitro model systems for studying bone resorption we have investigated the effects of IL-11 on 1) osteoclast formation, fusion, migration, and activity; and 2) osteoblast-mediated osteoid degradation. The involvement of matrix metalloproteinases (MMPs) and products of arachidonic acid metabolism in IL-11-mediated resorption were also assessed. We first examined the bone-resorptive effects of IL-11 by assessing 45Ca release from neonatal mouse calvarial bones. IL-11 dose-dependently stimulated bone resorption with an EC50 of 10(-10) M. The kinetics of IL-11-mediated 45Ca release demonstrated that it was without effect for the first 48 h of culture, but by 96 h, it stimulated 45Ca release to the same level as that produced by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] (a hormone that stimulates osteoclast formation and activity). IL-11 also produced a dose-dependent increase in osteoblast-mediated type I collagen degradation with a maximum of 58.0 +/- 6.2% at 5 x 10(-9) M; this effect of IL-11 was less than that produced by 1,25-(OH)2D3 (76.5 +/- 7.1%) and was prevented by an inhibitor of MMPs, but not those blocking arachidonic acid metabolism. We then tested the effects of IL-11 on isolated mouse osteoclasts cultured on ivory slices in the presence and absence of primary mouse osteoblasts. IL-11 had no effect on isolated osteoclast activity even in coculture with primary osteoblasts. We then examined the effects of IL-11 on the formation of osteoclast-like multinucleate cells in mouse bone marrow cultures and the resorptive activity of such cultures using ivory as a substrate. IL-11 dose-dependently increased 1) the number of tartrate-resistant acid phosphatase-positive osteoclast-like multinucleate cells and 2) the surface area of lacunar resorption, although the effects were less than that of 1,25-(OH)2D3. The effect of IL-11 on bone marrow lacunar resorption was prevented by a combination of inhibitors of 5-lipoxygenase and cyclooxygenase. In 17-day-old metatarsal bones, IL-11 prevented the migration of (pre)osteoclasts to future resorption sites, whereas their fusion was unaffected. These results provide strong evidence that IL-11 stimulates bone resorption by enhancing osteoclast formation and osteoblast-mediated osteoid degradation rather than stimulating osteoclast migration and activity. Our data also suggest that the stimulatory effects of IL-11 involve both MMPs and products of arachidonic acid metabolism.  相似文献   

4.
PTH recruits and activates osteoclasts to cause bone resorption. These actions of PTH are thought to be mediated indirectly via type 1 PTH/PTH-related peptide receptors (PTH1Rs) expressed by adjacent marrow stromal or osteoblastic cells, although some evidence suggests that PTH may act directly on early hematopoietic osteoclast progenitors. We have established clonal, conditionally immortalized, PTH-responsive, bone marrow stromal cell lines from mice that harbor both a transgene encoding a temperature-sensitive mutant of the simian virus 40 large T antigen and deletion of a single allele of the PTH1R gene. Of 60 stromal cell lines isolated, 45 expressed functional PTH1Rs. During coculture with normal murine spleen cells, 5 of 42 such cell lines could support formation of tartrate-resistant acid phosphatase-positive, multinucleated cells (TRAP+ MNCs) in response to 1,25-dihydroxyvitamin D3, but only 2 of these did so in response to PTH. One of these, MS1 cells, expressed numerous cytokines and proteins characteristic of the osteogenic lineage and showed increased production of interleukin-6 in response to PTH. MS1 cells supported dose-dependent induction by rat (r) PTH-(1-34) (0.1-100 nM) of TRAP+ MNCs that expressed calcitonin receptors and formed resorption lacunae on dentine slices. This effect of PTH, which required cell to cell contact between MS1 and spleen cells, was mimicked by coadministration of cAMP analog and phorbol ester but only partially by either agent alone. The carboxyl-terminal fragment rPTH-(53-84) also induced osteoclast-like cell formation, but the maximal effect was only 30% as great as that of rPTH-(1-34). Importantly, rPTH-(1-34) induced TRAP+ MNC formation even when PTH1R-/- osteoclast progenitors (from fetal liver of mice homozygous for ablation of the PTH1R gene) were cocultured with MS1 cells. We conclude that activation of PTH1Rs on cells of the osteoclast lineage is not required for PTH-(1-34)-induced osteoclast formation in the presence of appropriate PTH-responsive marrow stromal cells. MS1 cells provide a useful model for further study of PTH regulation of osteoclastogenesis.  相似文献   

5.
Integrins mediate cell adhesion and can induce different cellular responses, including changes in intracellular pH, changes and oscillation in intracellular free calcium, and protein phosphorylation on tyrosine. During bone resorption, the integrin alphav beta3 regulates adhesion of osteoclasts to bone extracellular matrix proteins, such us osteopontin (Opn). Adhesion via alphav beta3 is followed by osteoclast polarization onto the bone surface and by the onset of bone resorption. To characterize these events at the molecular level, we investigated the state of activation of alphav beta3 on the human osteoclast-like cell line GCT23 using the monoclonal antibody AP5 which binds to and can induce, under low calcium conditions, activated alphav beta3. By flow cytometry, approximately 50% of alphav beta3 on the surface of the osteoclast-like cell line GCT23 was reactive with AP5 and was therefore in the activated state. Incubation with AP5 in the presence of low calcium concentrations increased activated alphav beta3 to 90-100%. Activation of alphav beta3 increased the efficiency of GCT23 adhesion to Opn by 2-fold. Furthermore, haptotactic migration on Opn was also enhanced about 40% compared to control. We propose that changes in the activation state of alphav beta3 may be a regulation point for osteoclasts during bone resorption.  相似文献   

6.
Lipopolysaccharide (LPS) is a potent bone resorbing factor. We investigated the effect of LPS on osteoclast formation in three types of cultures. LPS inhibited osteoclast formation induced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], in a dose-dependent manner, in cultures of whole bone marrow cells without dexamethasone. LPS increased the amount of granulocyte-macrophage colony stimulating factor (GM-CSF) in the culture supernatant, and anti-GM-CSF antiserum almost abolished the inhibition of osteoclast formation by LPS, thereby indicating that GM-CSF generated by treatment with LPS may be responsible for the inhibition of osteoclast formation. In cultures with dexamethasone, the amount of GM-CSF was decreased to one-third of that with 1,25(OH)2D3 alone and was not changed by treatment with LPS. In this culture system, LPS enhanced osteoclast formation. In the coculture system of nonadherent bone marrow cells and a stromal cell line in the presence of 1,25(OH)2D3 and dexamethasone, where no detectable GM-CSF was present in the supernatant, LPS markedly enhanced osteoclast formation, whereas exogenously added GM-CSF (100 pg/ml) almost completely inhibited osteoclast formation. LPS stimulated pit formation on dentin slices by the osteoclast-like cells formed by in vitro culture system.  相似文献   

7.
Interferon-gamma (IFN-gamma) has been shown to inhibit interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha) stimulated bone resorption by strongly stimulating nitric oxide (NO) synthesis. Here we studied the mechanisms underlying this inhibition. Osteoclasts were generated in 10-day cocultures of mouse osteoblasts and bone marrow cells and the effect of cytokine-induced NO on osteoclast formation and activity was determined. Stimulation of the cocultures with IL-1 beta, TNF-alpha and IFN-gamma markedly enhanced NO production by 50- to 70-fold, and this was found to be derived predominantly from the osteoblast cell layer. When high levels of NO were induced by cytokines during early stages of the cocultures, osteoclast formation was virtually abolished and bone resorption markedly inhibited. Cytokine stimulation during the latter stages of coculture also resulted in inhibition of bone resorption, but here the effects were mainly due to an inhibitory effect on osteoclast activity. At all stages, however, the inhibitory effects of cytokines on osteoclast formation and activity were blocked by the NO-synthase inhibitor L-NMMA. Further investigations suggested that the NO-mediated inhibition of osteoclast formation was due in part to apoptosis of osteoclast progenitors. Cytokine stimulation during the early stage of the culture caused a large increase in apoptosis of bone marrow cells, and these effects were blocked by L-NMMA and enhanced by NO donors. We found no evidence of apoptosis in osteoclasts exposed to high levels of cytokine-induced NO at any stage in the culture, however, or of apoptosis affecting mature osteoclasts exposed to high levels of NO, suggesting that immature cells in the bone marrow compartment are most sensitive to NO-induced apoptosis. In summary, these studies identify NO as a potentially important osteoblast-osteoclast coupling factor which has potent inhibitory effects on bone resorption. These actions, in turn, are mediated by inhibition of osteoclast formation probably due to NO-induced apoptosis of osteoclast progenitors and by inhibition of the resorptive activity of mature osteoclasts.  相似文献   

8.
Porcine pancreatic extracts (PXs) have previously been shown to decrease blood ionized calcium in BALB/c mice (T. Yoneda, Y. Takaoka, and G. R. Mundy. FEBS Lett., 278: 171-174, 1991). In the present study, we show that the PX is effective in preventing progression of hypercalcemia and decreasing osteoclastic bone resorption associated with a human squamous carcinoma in nude mice. PX inhibited osteoclast-like cell formation in mouse bone marrow cultures and bone resorption in organ cultures of fetal rat long bones which had been stimulated by serum-free culture supernatants of this cancer. In addition, PX increased food intake, decreased weight loss, and prevented development of cachexia. In parallel with these effects, PX prolonged survival of tumor-bearing animals. PX might have therapeutic potential for management of hypercalcemia and cachexia associated with malignancy.  相似文献   

9.
Subclones of the human osteosarcoma cell line SaOS-2 were established by transfecting with an expression vector containing the human PTH/PTH-related protein (PTHrP) receptor, and their abilities to support osteoclast-like multinucleated cell (OCL) formation were examined in coculture with mouse or human hemopoietic cells. Of four subclones examined, SaOS-2/4 and SaOS-4/3 bound high levels of [125I]-PTH and produced a significant amount of cAMP in response to PTH. OCLs were formed in response to PTH in the cocultures of mouse bone marrow cells with either SaOS-2/4 cells or SaOS-4/3 cells. Human OCLs were also formed in response to PTH in the coculture of SaOS-4/3 cells and human peripheral blood mononuclear cells. Adding dexamethasone together with PTH greatly enhanced PTH-induced human OCL formation. Like mouse OCLs, human OCLs formed in response to PTH were tartrate-resistant acid phosphatase positive, expressed abundant calcitonin receptors and vitronectin receptors, and formed resorption pits on dentine slices. Other osteotropic factors such as 1alpha,25-dihydroxyvitamin D3, prostaglandin E2, and interleukin 6 plus soluble interleukin 6 receptors failed to induce mouse and human OCLs in cocultures with SaOS-4/3 cells. Both mouse and human OCL formation supported by SaOS-4/3 cells were inhibited by either adding an antibody against macrophage-colony stimulating factor or adding granulocyte/macrophage-colony stimulating factor. Thus, it is likely that human and mouse OCL formation supported by SaOS-4/3 cells are similarly regulated. These results indicate that the target cells of PTH for inducing osteoclast formation are osteoblast/stromal cells but not osteoclast progenitor cells in the coculture. This coculture model will be useful for investigating the abnormalities ofosteoclast differentiation and function in human metabolic bone diseases.  相似文献   

10.
In mouse bone marrow primary cultures, the formation of osteoclast-like, i.e. tartrate-resistant acid phosphatase (TRAP)- and calcitonin receptor-positive multinucleated cells (MNC), when induced by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3), can be suppressed by 17beta-estradiol (17beta-E2), whereas 17alpha-E2 is without any effect. 17beta-E2, above 10(-11) M, significantly reduced 1alpha,25(OH)2D3-mediated TRAP+ MNC formation in cultured bone marrow cells from both female and male mice. The estrogen at 10(-8) M suppressed the peak response to the vitamin D sterol by 50%. 17beta-E2 significantly suppressed basal and 1alpha,25(OH)2D3-stimulated cellular production of interleukin (IL)-6. IL-6 alone, although bone marrow cells in hormone-free culture produced appreciable amounts of the cytokine, did not induce any TRAP+ MNC. Therefore, the changes in IL-6 production induced by the hormones could not be the sole determinant for the extent of TRAP+ MNC formation. However, the stimulatory effect of 1alpha,25(OH)2D3 on osteoclastogenesis nevertheless can be significantly reduced by a neutralizing monoclonal anti-IL-6 antibody. In the presence of 10(-8) M 17beta-E2, the anti-IL-6 monoclonal antibody does not achieve any further suppression of 1alpha,25(OH)2D3-related osteoclast-like cell formation. Our data suggest that induction of osteoclastogenesis by 1alpha,25(OH)2D3 is partially dependent on IL-6 signaling and can be modulated by 17beta-E2 through interference with IL-6 receptor activation, in addition to inhibition of IL-6 production by marrow stromal cells.  相似文献   

11.
Peptido-leukotrienes are short-lived organic molecules known to have potent biological effects as mediators of inflammation, hypersensitivity and respiratory disorders. However, little is known concerning their effects on bone cells. We have shown previously that stromal cells isolated from a human giant cell tumor secrete 5-HETE (5-hydroxyeicosatetraenoic acid) and the peptido-leukotrienes, also known as the cysteinyl leukotrienes LTC4, LTD4, and LTE4. These eicosanoids were shown to stimulate the multinucleated giant cells obtained from these tumors to form resorption lacunae on sperm whale dentine. Here, we show that the peptido-leukotrienes also stimulate isolated avian osteoclast-like cells to form resorption lacunae and to increase their content of tartrate-resistant acid phosphatase. LTD4 increased 45Ca release from murine calvarial bone organ cultures, but not from fetal rat long bone cultures. Isolated avian osteoclast-like cells were chosen to perform receptor binding studies, as this population is the most homogeneous source of osteoclasts available. After the precursors had fused to form multinucleated cells, receptor binding assays were performed. Scatchard analysis of saturation binding data showed a single class of binding sites, with a dissociation constant (Kd) of 0.53 nM and a receptor density of 5,200 receptors per cell. Competition binding studies showed receptor specificity using a specific LTD4 receptor antagonist ZM 198,615. These data show that the peptido-leukotrienes activate highly enriched populations of isolated avian osteoclast-like cells, and also that specific LTD4 receptors are present in this cell population.  相似文献   

12.
A newly identified member of the tumor necrosis factor receptor (TNFR) superfamily shows activities associated with osteoclastogenesis inhibition and fibroblast proliferation. This new member, called TR1, was identified from a search of an expressed sequence tag database, and encodes 401 amino acids with a 21-residue signal sequence. Unlike other members of TNFR, TR1 does not contain a transmembrane domain and is secreted as a 62 kDa glycoprotein. TR1 gene maps to chromosome 8q23-24.1 and its mRNA is abundantly expressed on primary osteoblasts, osteogenic sarcoma cell lines, and primary fibroblasts. The receptors for TR1 were detected on a monocytic cell line (THP-1) and in human fibroblasts. Scatchard analyses indicated two classes of high and medium-high affinity receptors with a kD of approximately 45 and 320 pM, respectively. Recombinant TR1 induced proliferation of human foreskin fibroblasts and potentiated TNF-induced proliferation in these cells. In a coculture system of osteoblasts and bone marrow cells, recombinant TR1 completely inhibited the differentiation of osteoclast-like multinucleated cell formation in the presence of several bone-resorbing factors. TR1 also strongly inhibited bone-resorbing function on dentine slices by mature osteoclasts and decreased 45Ca release in fetal long-bone organ cultures. Anti-TR1 monoclonal antibody promoted the formation of osteoclasts in mouse marrow culture assays. These results indicate that TR1 has broad biological activities in fibroblast growth and in osteoclast differentiation and its functions.  相似文献   

13.
A cDNA clone encoding bone morphogenetic protein 4 (BMP 4) has been isolated from a primary fetal rat calvarial cell cDNA library. Sequencing of this clone has revealed a single open reading frame encoding a 408 amino acid protein. Comparison of 5' noncoding exon 1 portion of this cDNA with that of human bone and prostate BMP4 cDNA shows that BMP4 gene expression may possess tissue specificity.  相似文献   

14.
Recent evidence suggests that bisphosphonates (BPs) may inhibit bone resorption by mechanisms that lead to osteoclast apoptosis. We have previously shown that BPs also reduce cell viability and induce apoptosis in the macrophage-like cell line J774. To determine whether BPs inhibit osteoclast-mediated bone resorption and affect J774 macrophages by the same molecular mechanism, we examined the potency to reduce J774 cell viability of pairs of nitrogen-containing BPs that differ slightly in the structure of the heterocycle-containing side chain but that differ markedly in antiresorptive potency. In all cases, the most potent antiresorptive BP of each pair also caused the greatest loss of J774 viability, while the less potent antiresorptive BPs were also less potent at reducing J774 cell viability. Similarly, the bisphosphinate, phosphonoalkylphosphinate and monophosphonate analogs of BPs (in which one or both phosphonate groups are modified, giving rise to much less potent or inactive antiresorptive agents) were much less potent or inactive at reducing J774 cell viability. Thus, the structure-activity relationships of BPs for inhibiting bone resorption match those for causing loss of cell viability in J774 cells, indicating that BPs inhibit osteoclast-mediated bone resorption and reduce J774 macrophage viability by the same molecular mechanism. Loss of J774 cell viability after treatment with BPs was associated with a parallel increase in apoptotic cell death. We have recently proposed that nitrogen-containing BPs reduce cell viability and cause J774 apoptosis as a consequence of inhibition of enzymes of the mevalonate pathway and hence loss of prenylated proteins. In this study, the BPs that were potent inducers of J774 apoptosis and potent antiresorptive agents were also found to be effective inhibitors of protein prenylation in J774 macrophages, whereas the less potent BP analogs did not inhibit protein prenylation. This provides strong evidence that BPs with a heterocyclic, nitrogen-containing side chain, such as risedronate, inhibit osteoclast-mediated bone resorption and induce J774 apoptosis by preventing protein prenylation.  相似文献   

15.
16.
Bone resorption is initiated by osteoclast attachment to the mineralized matrix, cytoskeletal reorganization, cellular polarization, and the formation of the sealing zone. The present study examines the interaction between PYK2 and p130(Cas) (Crk-associated substrate), suggested to be part of the signaling pathway initiated by osteoclast adhesion. Using murine osteoclast-like cells (OCLs) and their mononuclear precursors (pOCs), generated in a co-culture of bone marrow and osteoblastic MB1.8 cells, we show that: 1) p130(Cas) is tyrosine-phosphorylated upon adhesion of pOCs to vitronectin or ligation of beta3 integrins; 2) p130(Cas) colocalizes with PYK2 and the cytoskeletal proteins F-actin, vinculin, and paxillin in the podosomal-rich ring-like structures of OCLs plated on glass and in the sealing zone in actively resorbing OCLs on bone; 3) p130(Cas) and PYK2 form a stable complex in pOCs, independent of tyrosine phosphorylation of either molecule, and this complex is present in Src (-/-) OCLs, in which neither protein is phosphorylated or associated with the osteoclast adhesion structure; 4) the association of p130(Cas) and PYK2 is mediated by the SH3 domain of p130(Cas) and the C-terminal domain of PYK2. These findings suggest that p130(Cas) and its association with PYK2 may play an important role in the adhesion-dependent signaling that leads to cytoskeletal reorganization and formation of the sealing zone during osteoclast activation.  相似文献   

17.
Bone is a common site for metastasis of malignant tumors. These can be recognized radiologically as either lytic or sclerotic lesions since the tumor cells stimulate resident bone cells to cause excessive local resorption or new bone formation. The osteoclast, as the only cell being capable of resorbing bone, is of major importance for the homing of tumor cells in bone and progression of metastasis due to bone destruction. Thus, the improvement of our means of therapeutic intervention towards prevention of tumor progression and pathological fractures will depend on our better understanding of both the molecular basis of bone resorption and the cellbiology of the osteoclast. This article presents our current opinion of the molecular mechanisms of bone resorption by the osteoclast. After describing the morphological features of the osteoclast, aspects such as cell mobility, attachment, enzymes synthesis, transmembrane transport, osteoclast differentiation and function, as well as the protooncogenes c-src and c-cbl and their role in bone resorption are presented in detail.  相似文献   

18.
Echistatin, an RGD-containing peptide, was shown to inhibit the acute calcemic response to exogenous PTH or PTH-related protein (PTH-rP) in thyroparathyroidectomized rats, suggesting that echistatin inhibits bone resorption. In this study: 1) we present histological evidence for echistatin inhibition of bone resorption in mice with secondary hyperparathyroidism, and show that 2) echistatin binds to osteoclasts in vivo, 3) increases osteoclast number, and 4) does not detectably alter osteoclast morphology. Infusion of echistatin (30 microg/kg x min) for 3 days prevented the 2.6-fold increase in tibial cancellous bone turnover and the 36% loss in bone volume, produced by a low calcium diet. At the light microscopy level, echistatin immunolocalized to osteoclasts and megakaryocytes. Echistatin treatment increased osteoclast-covered bone surface by about 50%. At the ultrastructural level, these osteoclasts appeared normal, and the fraction of cells containing ruffled borders and clear zones was similar to controls. Echistatin was found on the basolateral membrane and in intracellular vesicles of actively resorbing osteoclasts. Weak labeling was found in the ruffled border, and no immunoreactivity was detected at the clear zone/bone surface interface. These findings provide histological evidence for echistatin binding to osteoclasts and for inhibition of bone resorption in vivo, through reduced osteoclast efficacy, without apparent changes in osteoclast morphology.  相似文献   

19.
Osteoclast development requires cell-to-cell contact between hematopoietic osteoclast progenitors and bone marrow stromal/osteoblastic support cells. Based on this, we hypothesized that osteopontin, an adhesion protein produced by osteoclasts and osteoblasts, plays a role in osteoclastogenesis. Using in situ hybridization, we demonstrate that cells expressing the osteopontin messenger RNA (mRNA) appear after 3 days of culturing murine bone marrow cells. The number of these cells increases thereafter, reaching a peak on day 5. In the same cultures, cells expressing alkaline phosphatase (AP) or tartrate resistant acid phosphatase (TRAP), phenotypic markers for osteoblastic and osteoclast-like cells, respectively, appeared subsequent to the appearance of the osteopontin-positive cells. By means of a combination of in situ hybridization and histostaining, it was shown that the osteopontin mRNA was localized in 30-50% of the AP-positive or the TRAP-positive, as well as in nonspecific esterase (NSE)-positive, cells. The number of cells expressing both the osteopontin mRNA and either one of the three phenotypic markers was significantly increased in bone marrow cultures from estrogen-deficient mice, as compared with controls. Conversely, the number of all three populations of double positive cells was decreased in cultures treated with a specific antimouse rabbit osteopontin antibody or an RGD peptide. These findings indicate that osteopontin is expressed during the early stages of the differentiation of osteoclast and osteoblast progenitors in the bone marrow and that its cell adhesion properties are required for osteoclastogenesis.  相似文献   

20.
Bone mass is maintained constant in vertebrates through bone remodeling (BR). BR is characterized by osteoclastic resorption of preexisting bone followed by de novo bone formation by osteoblasts. This sequence of events and the fact that bone mass remains constant in physiological situation lead to the assumption that resorption and formation are regulated by each other during BR. Recent evidence shows that cells of the osteoblastic lineage are involved in osteoclast differentiation. However, the existence of a functional link between the two activities, formation and resorption, has never been shown in vivo. To define the role of bone formation in the control of bone resorption, we generated an inducible osteoblast ablation mouse model. These mice developed a reversible osteopenia. Functional analyses showed that in the absence of bone formation, bone resorption continued to occur normally, leading to an osteoporosis of controllable severity, whose appearance could be prevented by an antiresorptive agent. This study establishes that bone formation and/or bone mass do not control the extent of bone resorption in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号