首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing demand for high-performance materials, in for example aerospace and biomedical industries, calls for more efficient and capable technologies. This paper describes a new technology, namely Mechano-Electrochemical Milling (MECM), which combines electrochemical machining (ECM) with a mechanical cutting process. The process behaviour has been investigated experimentally based on the machining of two Titanium alloys, Titanium grade 2 and Titanium grade 5. The material removal mechanism was investigated through analysis of the machined surface and removed material. Besides the slightly higher material removal rate in MECM compared to ECM, the MECM process results in more stable process conditions.  相似文献   

2.
Brief design and manufacture considerations are detailed for a hybrid electrochemical grinding unit adapted from a vertical machining centre using a 40,000 rpm spindle and 500 A DC generator. Subsequently, experimental work is presented on the influence of tool bond systems, superabrasive grit type and electrical parameters when simultaneous ECM/grinding Udimet 720 using 10-15 mm diameter plain points. Single layer electroplated CBN tools produced G-ratios and maximum normal cutting forces of ∼451 and ∼45 N, respectively, compared to ∼128 and 557 N for equivalent diamond wheels. Data on workpiece roughness and overcut are also presented as are initial results for a fir tree shaped tool.  相似文献   

3.
Electrochemical drilling of multiple holes with electrolyte-extraction   总被引:1,自引:0,他引:1  
D. Zhu  W. Wang  X.L. Fang  N.S. Qu  Z.Y. Xu 《CIRP Annals》2010,59(1):239-242
This paper proposes an electrochemical drilling method of multiple holes in which the reverse electrolyte flow is achieved in the way of electrolyte-extraction, instead of traditional forward electrolyte flow which often causes poor electrolyte flow condition and so unstable machining process. The combining manifold is optimized to equalize electrolyte flow rate in each electrode tube. Furthermore, wedge-shaped electrode tubes are adopted in order to distribute the electrolyte flow more uniformly while holes with inclination angles are processed. By the proposed technique, multiple holes with diameter of 1-2 mm and aspect ratios of 2 have been produced with good quality and efficiency.  相似文献   

4.
In the interelectrode gap of ECM, the electrolyte flow results in ununiformly distributed temperature and volume fraction of bubbles, leading to uneven distribution of the gap width. This paper aimed to realize high precision ECM using stationary electrolyte. A single current pulse was supplied after every jump flushing motion of the tool electrode. The pulse duration used was set sufficiently short not to cause the boiling of the electrolyte. Furthermore, the stamp flushing method was newly developed to squeeze out the sludge and bubbles from the gap to achieve high precision machining.  相似文献   

5.
This paper describes a micro ECM system using the electrostatic induction feeding method. With this method, since the pulse voltage is coupled to the tool electrode by capacitance, the pulse duration of the electrolytic current is determined by the rise and fall time of the voltage pulse and is thus significantly short, realizing short gap width. A servo feed system was also developed based on the measurement of the gap voltage. Wear of the tungsten tool was negligibly small because of the oxide layer formed on the tool, allowing micro-holes with sharp edges and straight walls to be drilled.  相似文献   

6.
Micro electrochemical machining for complex internal micro features   总被引:2,自引:0,他引:2  
In this paper, the application of micro electrochemical machining (ECM) for the micromachining of internal features is investigated. By controlling pulse conditions and machining time, micro features are machined on the side wall of a micro hole. These methods can easily machine a micro hole with larger internal diameters than the entrance diameter, which is very difficult to do by the conventional processes. A micro disk-shaped electrode with an insulating layer on its surface is also introduced to machine microgrooves inside the hole. This method is similar to the turning lathe process. The purpose of this study was to confirm the various possibilities of making complex internal structures in a micro hole by micro ECM.  相似文献   

7.
以高温镍基合金Inconel718为基材进行气膜冷却孔电解加工基础试验,在电解加工过程中,阴极反应界面析出氢气,导致电解液的电导率不再是一个常数,从而影响冷却孔的加工成型精度。结合前期基础试验,建立冷却孔电解加工流道二维模型,基于COMSOL Multiphysics软件对冷却孔端面间隙内气液两相流场进行仿真,研究加工电压、电解液入口压力及管电极进给速度对氢气析出量的影响,并定性地分析电解加工过程中气泡率与电导率之间的关系。由仿真结果可知:氢气的体积分数随加工电压和电极进给速度的增大而增大,随电解液入口压力的增大而减小,且氢气体积分数越大,电解液的电导率越小。  相似文献   

8.
D. Zhu  Y.B. Zeng  Z.Y. Xu  X.Y. Zhang 《CIRP Annals》2011,60(1):247-250
This paper presents a hybrid process of grinding and electrochemical removal for machining of precision small holes with hard-to-machine materials. In the process, a metal rod with coated abrasives as cathode tool rotates at high speed and removes material electrochemically and mechanically for a pre-machined pilot hole. The effects of process parameters on the hole surface quality and dimensional accuracy were demonstrated experimentally. Material removals on grinding and electrochemical machining are well balanced by rationally determining machining voltage, tool rotation speed and feed rate. Precision holes of diameters down to 0.6 mm with sharp edges and without burrs have been produced.  相似文献   

9.
The development of new, advanced engineering materials and the need for precise and flexible prototypes and low-volume production have made the wire electrical discharge machining (EDM) an important manufacturing process to meet such demands. This research investigates the effect of spark on-time duration and spark on-time ratio, two important EDM process parameters, on the material removal rate (MRR) and surface integrity of four types of advanced material: porous metal foams, metal bond diamond grinding wheels, sintered Nd-Fe-B magnets, and carbon–carbon bipolar plates. An experimental procedure was developed. During the wire EDM, five types of constraints on the MRR due to short circuit, wire breakage, machine slide speed limit, and spark on-time upper and lower limits are identified. An envelope of feasible EDM process parameters is generated for each work-material. Applications of such a process envelope to select process parameters for maximum MRR and for machining of micro features are discussed. Results of Scanning Electron Microscopy (SEM) analysis of surface integrity are presented.  相似文献   

10.
Complex sealing arrangement in turbomachinery can increase turbine efficiency by reducing leakage of high-pressure cooling flows into the hot gas path. While die-sinking EDM is widely used to machine straight seal slots, electrode preparation and wear make it less efficient for complex shapes. This paper presents research on optimisation of a variant of EDM milling using process control and fluid dynamics simulation to exploit optimal machining conditions. The analysis demonstrates a stable process to machine complex shaped slots by focusing on the key requirements for large-scale turbomachinery component manufacture, namely productivity, surface integrity and process monitoring.  相似文献   

11.
12.
Micro texturing is performed over a large area of a metal surface by an appropriate electrochemical machining. A micro texture pattern with a size of several tens of micrometers is fabricated on a millimeter-scale tool electrode surface and is simultaneously replicated on the workpiece in one process. A shorter pulse width is required for better machining accuracy, and then branched electric feeding is adopted because the minimum machinable pulse width is limited due to the inductance of the power supply circuit. Micro textures smaller than a hundred micrometers could be achieved with a machining area of several tens of square millimeters.  相似文献   

13.
B.H. Kim  Y.S. Lee  C.N. Chu 《CIRP Annals》2005,54(1):191-194
Micro electrochemical machining (ECM) using ultra short pulses with tens of nanosecond duration is presented. 0.1 M sulfuric acid was used as electrolyte and 3D micro structures were machined on stainless steel. To prevent taper, a disk-type electrode was introduced. Using the disk-type electrode, taper could be eliminated. To improve productivity, multiple electrodes were applied and multiple structures were machined simultaneously. Since the wear of tool electrode is negligible in ECM, micro wire can be used as tool electrode. Using a platinum wire electrode with 10 urn diameter, various 3D features were machined on stainless steel plate.  相似文献   

14.
《CIRP Annals》2019,68(1):53-56
Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is an important material for dental, biomedical, and mechanical applications. In this study, Y-TZP was cut by a single-crystal diamond tool in the micro-nanometre scale. The chip morphology and machined surface/subsurface properties under various conditions were investigated by scanning electron microscopy, Raman spectroscopy and cross-sectional transmission electron microscopy. Two factors dominating the material removal were identified: (i) crystal grain refinement and (ii) tetragonal-to-monoclinic phase transformation, the mechanisms of which were established by experiments and finite element simulations. This study provides a possible solution to the rapid fabrication of small 3D features on Y-TZP with nanometric surface roughness and an ultra-fine-grained subsurface layer.  相似文献   

15.
This paper describes mathematical modeling of material removal rate (MRR) and surface roughness of the bevel gears finished by the electro-chemical honing (ECH) process. Since, ECH hybridizes electrochemical dissolution (ECD) and mechanical honing therefore, contribution of ECD in MRR and surface roughness has been modeled using Faraday's law of electrolysis while contribution of mechanical honing has been modeled considering material removal as a phenomenon of uniform wear and using Archard's wear model. Formulations are also proposed for computing the surface area, required by these two models, along the inter-electrode gap (IEG) based on the geometry of the straight bevel gear tooth surfaces. The developed models were experimentally validated using an indigenously developed experimental setup for finishing of bevel gears by ECH based on an envisaged novel concept of twin complementary cathode gears. An aqueous solution containing 25% NaCl + 75% NaNO3 was used as the electrolyte. The predicted values of MRR and surface roughness have shown close agreement with the experimental values. The experimental results, SEM images and bearing area curve have shown appreciable improvement in the surface roughness and surface integrity ensuring better operating performance of the gears finished by ECH within an optimized finishing time of 2 min.  相似文献   

16.
This paper proposes a method of electrochemical micromachining of micro hole or dimple array, in which a patterned insulation plate coated with metal film as cathode is closely attached to workpiece plate. When voltage is applied across the workpiece and cathode film over which the electrolyte flows at high speed, hole or dimple array will be produced. The proposed technology offers unique advantages such as short lead time and low cost. The effect of process parameters on the microstructure shape was demonstrated numerically and experimentally. Arrays of holes or dimples of several hundred micrometers diameter have been produced.  相似文献   

17.
《CIRP Annals》2019,68(1):165-168
The demand of improving the accuracy of leading/trailing edges of aero engine blades has increased continually. This paper proposes a method of electrochemical machining with tangential feeding in which the leading/trailing edges are electrochemically processed by the cathode tools feeding along the tangential direction of the mean camber line of blades. The modelling and simulation on the ECM process have been carried out. A specific experiment system has been developed. Theoretical and experimental studies have proved that the proposed technology of tangential feeding offered unique advantages such as short electrolyte path, stable machining current and so achieved high machining accuracy.  相似文献   

18.
Two types of permanent mould materials, spheroidal graphite (SG) cast iron and Al-Si alloy with various compositions, were selected to study the effect of heterogeneous second phase on material removal rate (MRR) by the electro-discharge machining (EDM) process. Fe-Si alloy and Al-1wt%Si alloy with a mainly single-phase structure were also prepared for comparison.

Experimental results indicated that the amount and morphology of second phase particles significantly influence the material removal rate (MMR). This is closely related to ridge density and discharge density during the EDM process.

The EDMed surface of the specimens had a continuously ridged appearance and the ridge density increases with higher amount of second phase. Worthy of notice is that the graphite particles are embedded in the troughs on the EDMed surface of SG cast iron, while the eutectic silicon particles are located on the ridge region in the case of Al-Si alloys.  相似文献   

19.
Electrochemical discharge machining (ECDM) is a promising machining technology that effectively machines non-conducting and brittle materials, featuring good material removal rate, flexibility, and accuracy of machining. ECDM makes use of the electrochemical discharge phenomenon to trigger the discharging by the gas film surrounding the tool electrode. As the fundamental of electrochemical discharging, gas film is essential to the machining quality and efficiency. However, modeling of gas film in electrochemical reaction is not well established. This paper presents analytical modeling of the gas film, involving bubble growth and departure on electrode, gas film evolution, and electrolysis characteristics. Experiments were carried out to compare models to the actual discharging phenomenon. High speed camera imaging demonstrated the formation of a gas film on the tool electrode. The range of thickness of gas film found in experiments indicated good consistency with the range of film thickness estimated from analytical models. Experiments on critical voltages and currents further revealed the characteristics of the gas film in electrochemical reaction.  相似文献   

20.
B.J. Park  C.N. Chu 《CIRP Annals》2006,55(1):197-200
In micro electrochemical machining using ultra short pulses, the machining rate is significantly influenced by the tool electrode area. As the tool area increases, the electrical double layer capacitance increases and the electrolyte resistance decreases. As a result, the rising time of the double layer potential increases and it is more difficult to obtain effective machining potential within the ultra short pulse duration. A simple insulation method using enamel coating on the side wall of the tool electrode is introduced. The insulated tool electrode was not sensitive to the machining depth and was effective for machining high aspect ratio structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号