首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four grades of concrete with and without fly ash were devised and tested for compressive strength. The concretes were cured in three different curing regimes. The skin strength of concretes under inadequate curing was calculated by assuming a linear model for the variation of strength, and the strength difference between cement and fly ash concretes has been worked out. The skin strength of cement concretes was found to be higher than that of fly ash concretes. The test results were found to be affected by the size of the test specimen, when proper curing was not provided. The difference in sorptivity of fly ash and cement concretes cured for four days and not provided with any initial curing has been included. For all grades of concrete, the sorptivity of fly ash concrete was found to be marginally higher. The difference in sorptivity between fly ash and cement concretes was observed to increase as the strength of the mix decreased. The effect of initial curing was found to be highly significant. The sorptivity of samples with no curing was twice as much as those with four days initial curing. Besides the material properties, the age and strength of a fly ash concrete were also found to be important factors in determining the cementing efficiency of the fly ash.  相似文献   

2.
The present study reviews the effects of fly ash fineness on the compressive and splitting tensile strength of the concretes. A fly ash of lignite origin with Blaine fineness of 2351?cm2/g was ground in a ball mill. As a consequence of the grinding process, fly ashes with fineness of 3849?cm2/g and 5239?cm2/g were obtained. Fly ashes with three different fineness were used instead of cement of 0%, 5%, 10%, and 15% and ten different types of concrete mixture were produced. In the concrete mixtures, the dosage of binder and water/cement ratio were fixed at 350?kg/m3 and 0.50, respectively. Slump values for the concretes were adjusted to be 100 ± 20?mm. Cubic samples were cast with edges of 100?mm. The specimens were cured in water at 20°C. At the end of curing process, compressive and splitting tensile strengths of the concrete samples were determined at 7, 28, 56, 90, 120 and 180?days. It was observed that compressive and splitting tensile strength of the concretes was affected by fineness of fly ash in short-and long-terms. It was found that compressive and tensile strength of the concretes increased as fly ash fineness increased. It was concluded that Blaine fineness value should be above 3849?cm2/g fineness of fly ash to have positive impact on mechanical properties of concrete. The effects of fly ash fineness on the compressive and splitting tensile strength of the concretes were remarkably seen in the fly ash with FAC code with fineness of 5235?cm2/g.  相似文献   

3.
This paper presents the effect of nano silica (NS) on the compressive strength of mortars and concretes containing different high volume fly ash (HVFA) contents ranging from 40% to 70% (by weight) as partial replacement of cement. The compressive strength of mortars is measured at 7 and 28 days and that for concretes is measured at 3, 7, 28, 56 and 90 days. The effects of NS in microstructure development and pozzolanic reaction of pastes containing above HVFA contents are also studied through backscattered electron (BSE) image and X-ray diffraction (XRD) analysis. Results show that among different NS contents ranging from 1% to 6%, cement mortar containing 2% NS exhibited highest 7 and 28 days compressive strength. This NS content (2%) is then added to the HVFA mortars and concretes and the results show that the addition of 2% NS improved the early age (7 days) compressive strength of mortars containing 40% and 50% fly ash by 5% and 7%, respectively. However, this improvement is not observed at high fly ash contents beyond 50%. On the other hand, all HVFA mortars exhibited improvement in 28 days compressive strength due to addition of 2% NS and the most significant improvement is noticed in mortars containing more than 50% fly ash. In HVFA concretes, the improvement of early age (3 days) compressive strength is also noticed due to addition of 2% NS. The BSE and XRD analysis results also support the above findings.  相似文献   

4.
Compressive strength developed by concretes containing fly ash up to 80% of the cementitious fraction is presented. The effects of mix design technique, quantity of cement in the mix and the curing period on the strength development of fly ash concrete are also included. A comparison of the rate of strength development of the control and fly ash concretes is also provided. It is concluded that the optimum level of replacement of cement by fly ash depends on the actual amount of cement in the mix.  相似文献   

5.
This paper presents the experimental results of a research carried out on the strength and permeability related properties of high performance concretes made with binary and ternary cementitious blends of fly ash (FA) and metakaolin (MK). The replacement ratios for FA were 10% and 20% by weight of Portland cement and those for MK were 5% and 10%. Compressive strength, chloride permeability, water sorptivity, and water absorption properties of concretes were obtained in this study for different testing ages up to 90 days. The influences of fly ash, metakaolin, and testing age on the properties of concretes have been identified using the analysis of variance. The statistical based regression models and the response surface method with the backward stepwise techniques were employed in the multi-objective optimization analysis. That is carried out by maximizing compressive strength while minimizing chloride permeability, water sorptivity, and water absorption. It was observed that fly ash and especially metakaolin were very effective on the aforementioned properties of the concretes, depending mainly on replacement levels and duration of curing. The results indicated that the ternary use of fly ash and metakaolin with the approximate cement replacement values of 13.3% and 10% respectively has provided the best results for the testing age of 90 days, when the optimized strength and permeability based durability properties of the concretes are concerned.  相似文献   

6.
A framework is proposed, along with two objective indices, for the selection of concrete mixture proportions based on sustainability criteria. The indices combine energy demand and long-term strength as energy intensity, and carbon emissions and durability parameters as A-indices, which represent the apathy toward these essential features of sustainability. The decision support framework is demonstrated by considering a set of 30 concretes with different binders, including ordinary portland cement (OPC), fly ash, slag and limestone calcined clay cement (LC3). In addition to the experimental data on compressive strength, chloride diffusion and carbonation, life cycle assessment has been performed for the concretes considering typical situations in South India. The most sustainable of the concretes studied here, for service life limited by chloride ingress, are those with LC3, OPC replaced by 50% slag, and ternary blends with 20% each of slag and fly ash. In the case of applications where carbonation is critical, the appropriate concretes are those with OPC replaced by 15–30% slag or 15% fly ash, or with ternary blends having 20% slag and 20% Class F fly ash.  相似文献   

7.
A detailed investigation carried out to ascertain the durability characteristics of fine glass powder modified concretes is reported in this paper. Tests were designed to facilitate comparisons between concretes modified with either glass powder or fly ash at the same cement replacement level. The optimal replacement level of cement by glass powder is determined from strength and hydration tests as 10%. The later age compressive strengths of glass powder and fly ash modified concretes are seen to differ by only 5%. The durability characteristics are ascertained using tests for rapid chloride permeability, alkali–silica reactivity, and moisture transport parameters. The chloride penetrability values indicate some amount of pore refinement. The potential of glass powder to reduce the expansion due to alkali–silica reaction is established from tests conducted in accordance with ASTM C 1260, but fly ash is found to perform better at similar replacement levels. Glass powder–fly ash blends that make up a 20% cement replacement level are found to be as efficient as 20% fly ash in reducing expansion. The control concrete is seen to exhibit the lowest overall moisture intake after 14 days of curing, and fly ash concrete the highest, with the glass powder concrete in between. The trend is reversed at later ages, demonstrating that both the replacement materials contribute to improved durability characteristics. The sorptivity and moisture diffusion coefficient values calculated from the moisture intake-time data also demonstrate a similar trend. These studies show that fine glass powder has the potential to improve the durability of concretes.  相似文献   

8.
This paper presents an experimental study on the restrained shrinkage cracking of the lightweight concretes made with cold-bonded fly ash lightweight aggregates. Two types of fly ash having different physical and chemical properties were utilized in the production of lightweight aggregates with different strengths. Afterwards, lower strength aggregates were also surface treated by water glass and cement–silica fume slurry to improve physical and mechanical properties of the particles. Therefore, a total of eight concrete mixtures were designed and cast at 0.35 and 0.55 water–cement ratios using four types of lightweight coarse aggregates differing in their surface texture, density, water absorption, and strength. Ring type specimens were used for restrained shrinkage cracking test. Free shrinkage, creep, weight loss, compressive and splitting tensile strengths, and modulus of elasticity of the concretes were also investigated. Results indicated that improvement in the lightweight aggregate properties extended the cracking time of the concretes resulting in finer cracks associated with the lower free shrinkage. Moreover, there was a marked increase in the compressive and splitting tensile strengths, and the modulus of elasticity.  相似文献   

9.
Pelletization is a worldwide process used in producing artificial aggregates although its usage is not common in Turkey. In this study, lightweight aggregates (LWAs) were manufactured through cold-bonding pelletization of ground granulated blast furnace slag (G) and two types of fly ash with different finenesses (Fly ash A and B). Ordinary Portland cement (PC) was used as a binder at varying amounts from 5 to 20 % by weight. A total of 20 cold-bonded lightweight aggregates were produced at room temperature with different combinations of PC, FA and/or G. The hardened aggregates were tested for specific gravity, water absorption, and crushing strength. Thereafter, lightweight concretes (LWCs) were produced with water to cement ratio of 0.50 and a cement content of 400?kg/m3 by using such lightweight aggregates. The hardened concretes were tested for compressive strength at 28 and 56?days to explore the effect of aggregate types on the compressive strength development. Test results revealed that the amount of cement content had a significant effect on the strength of LWAs which in turn governed the variation in compressive strength of the LWCs. The highest 28 and 56-day compressive strengths of 43 and 51?MPa, respectively were achieved for the concretes including LWAs produced from the blend of 40 % slag, 40 % FA-A and 20 % PC.  相似文献   

10.
This paper aims to advance research on the use in concrete of a high volume of fly ash, with a high loss on ignition value, aiding in sustainable low carbon footprint construction. To this end, the work explores the benefits that may be achieved in terms of long-term concrete performance from the incorporation of fly ash along with a chemical activator. Durability tests are performed on concrete with an activated hybrid cementitious system: Portland cement (PC) and high volume fly ash with sodium sulfate. The chloride diffusion coefficient significantly decreased over time for the activated system (50% PC - 50% fly ash with added sodium sulfate) compared to the control samples (100% PC and 80% PC - 20% fly ash) at the same water to cementitious material ratio. This behavior is particularly evident in samples cured under controlled laboratory conditions (100% RH and 23 °C). However, outdoor curing increases the permeability for all concretes. Long term carbonation is also investigated under natural exposure conditions, and samples that are cured outdoors exhibit a significant carbonation depth. The compressive strength is correlated with the durability parameters: the durability performance improves as the compressive strength increases, indicating that as is the case for Portland cement (but not always for alkali-activated binders), the microstructural factors which yield high strength are also contributing to durability properties.  相似文献   

11.
When dealing with concrete resistance to high temperatures it is important for design purposes to know the elastic parameters, such as the temperature–strain curves and the modulus of elasticity.Concretes containing a high volume of fly ash differ from conventional mixes in the cementitious phase. This results in a different behaviour under heating compared to plain Portland cement concretes. To find the elastic response of fly ash concrete four series of concrete mixtures were manufactured: one with cement only, another with 30% by mass partial replacement of cement by fly ash, and two with 30% and 40% by mass replacement of cement by ground fly ash. Tests were carried out on cylinders (150 × 300 mm). A high-calcium fly ash was used.The conditions were selected so that the applied level of stress corresponded to 25% or to 40% of the ultimate compressive strength of concrete, and a transient type of temperature regime was followed. Based on the experiments the critical temperature, the residual deformation and the modulus of elasticity were determined.The results indicate that concretes containing a high volume of fly ash are more sensitive to high temperatures, since they developed greater deformations. The fineness of the fly ash used also seems to influence the degree of deformation in an adverse way.  相似文献   

12.
This paper explains the effect of water curing condition on compressive strengths of fly ash–cement paste by quantitative data of hydration degree. Hydration of fly ash–cement paste was estimated by Rietveld analysis and selective dissolution. The result shows that the hydration degree of belite is affected by water curing conditions, more so than that of fly ash and alite. Fly ash still continues to hydrate even without an extra, external supply of water. The strong dependence of fly ash–cement concrete on curing conditions does not come from the hydration degree of fly ash, but rather comes from the hydration degree of cement, especially belite. When the water to binder ratio is low enough, the hydration of cement plus small hydration of fly ash are considered to be enough for adequate compressive strength at the beginning. Then, compressive strength of fly ash–cement paste becomes less sensitive to the water curing period.  相似文献   

13.
The permeability of fly ash concrete   总被引:1,自引:0,他引:1  
Oxygen permeability tests were carried out on plain ordinary Portland cement (OPC) and fly ash concretes at three nominal strength grades. Prior to testing the concretes were subjected to a wide range of curing and exposure conditions. The results emphasize the importance of adequate curing to achieve concrete of low permeability, especially when the ambient relative humidity is low. In addition, the results demonstrate the considerable benefit that can be achieved by the use of fly ash in concrete. Even under conditions of poor curing, fly ash concrete is significantly less permeable than equal-grade OPC concrete, the differences being more marked for higher-grade concretes. Attempts were made to correlate strength parameters with permeability but it is concluded that neither the strength at the end of curing nor the 28-day strength provides a reliable indicator of concrete permeability. A reliable correlation was established between the water to total cementitious material ratio [w/(c+f)] and the permeability of concretes subjected to a given curing and exposure regime.  相似文献   

14.
The influence of the concentration of the activating agent (4, 6, or 8 M sodium hydroxide solution), and activator-to-binder ratio (0.40, 0.50, or 0.60) on the compressive strengths, pore structure features, and microstructure of concretes containing Class F fly ash or ground granulated blast furnace slag (GGBFS) as the sole binder is reported. The starting material contents and the curing parameters (temperature and curing duration) are optimized to provide the highest compressive strengths. Statistical analysis of the compressive strength results show that the activator concentration has a larger influence on the compressive strengths of activated concretes made using fly ash and the activator-to-binder ratio influences the compressive strengths of activated GGBFS concretes to a greater degree. Activated fly ash concretes and pastes are found to be more porous and contains a larger fraction of pores greater than 10 μm in size as compared to activated GGBFS mixtures. The differences in the microstructure and the reaction products between activated fly ash and GGBFS pastes are detailed.  相似文献   

15.
An experimental investigation was conducted to evaluate the performance of metakaolin (MK) concrete at elevated temperatures up to 800 °C. Eight normal and high strength concrete (HSC) mixes incorporating 0%, 5%, 10% and 20% MK were prepared. The residual compressive strength, chloride-ion penetration, porosity and average pore sizes were measured and compared with silica fume (SF), fly ash (FA) and pure ordinary Portland cement (OPC) concretes. It was found that after an increase in compressive strength at 200 °C, the MK concrete suffered a more severe loss of compressive strength and permeability-related durability than the corresponding SF, FA and OPC concretes at higher temperatures. Explosive spalling was observed in both normal and high strength MK concretes and the frequency increased with higher MK contents.  相似文献   

16.
The influence of high-calcium fly ash and silica fume as a binary and ternary blended cement on compressive strength and chloride resistance of self-compacting concrete (SCC) were investigated in this study. High-calcium fly ash (40–70%) and silica fume (0–10%) were used to replace part of cement at 50, 60 and 70 wt.%. Compressive strength, density, volume of permeable pore space (voids) and water absorption of SCC were investigated. The total charge passed in coulombs was assessed in order to determine chloride resistance of SCC. The results show that binary blended cement with high level fly ash generally reduced the compressive strength of SCC at all test ages (3, 7, 28 and 90 days). However, ternary blended cement with fly ash and silica fume gained higher compressive strength after 7 days when compared to binary blended fly ash cement at the same replacement level. The compressive strength more than 60 MPa (high strength concrete) can be obtained when using high-calcium fly ash and silica fume as ternary blended cement. Fly ash decreased the charge passed of SCC and tends to decrease with increasing fly ash content, although the volume of permeable pore space (voids) and water absorption of SCC were increased. In addition when compared to binary blended cement at the same replacement level, the charge passed of SCC that containing ternary blended cement was lower than binary blended cement with fly ash only. This indicated that fly ash and silica fume can improve chloride resistance of SCC at high volume content of Portland cement replacement.  相似文献   

17.
Generally, concrete with high resistance to the marine environment should have high compressive strength, a low chloride diffusion coefficient (D C), and a high acceptable chloride level (Ac). Considering all parameters simultaneously, this study evaluated the degree of fly ash concrete durability based on 10-year results in a marine site. Based on the concrete durability (Ac/D C, as compared to cement concrete with a W/B ratio of 0.45) and compressive strength, the degree of concrete durability proposed in this study indicates that fly ash concretes with a W/B ratio of 0.45 and 15–35 wt % fly ash replacement exhibit high-quality performance in a marine site.  相似文献   

18.
Laboratory flow, strength, and ultrasnic pulse velocity tests were performed on mortars made with 70% (by weight) of portland cement and 30% of pozzolanic materials where the pozzolanic materials consisted of various combinations of fly ash and silica fume. In addition to these ternary systems, binary blends, such as Portland cement and fly ash, and Portland cement and silica fume, along with 100% Portland cement mortars, were investigated for comparison. The purpose of the investigation, preliminary in nature, was to see under what circumstances, if any, would be a synergistic action when a ternary system of Portland cement-fly ash-silica fume is used in a mortar or concrete.Mortars were made with two cements of type I and two cements of type III along with class F and class C fly ashes. One silica fume was used. Standard flow tests were performed on the fresh mortars, and compressive strength as well as ultrasonic pulse velocity tests were performed with each hardened mortar at various ages up to 28 days. It is expected that the results and conclusions obtained here on mortars will be transferable to concretes.There are several novel, or at least lesser known, results of the investigation. For instance, a new explanation is offered for the plasticizing effect of fly ash which is based on the optimum particle-size distribution concept. Another such result is that ground fly ash produced greater flow increases with type I cement than with type III. A third finding is that the superplasticizer is more effective in increasing the flow as well as strength when the mortars contain fly ash and/or silica fume than in the case of mortars without mineral admixture. Also, it appears that when type I cement is used, the silica fume in the quantity of 5% of the weight of the cement produces relatively greater strength increase in the presence of fly ash than without fly ash.These promising results are preliminary in nature. Therefore, further research is justified with ternary systems in concrete. The presented work is a portion of a larger investigation.  相似文献   

19.
This paper presents the effect of air curing, water curing and steam curing on the compressive strength of Self Compacting Concrete (SCC). For experimental study, SCC is produced with using silica fume (SF) instead of cement by weight, by the ratios of 5%, 10% and 15%, and fly ash (FA) with the ratios of 25%, 40% and 55%. It is observed that mineral admixtures have positive effects on the self settlement properties. The highest compressive strength was observed in the concrete specimens with using 15% SF and for 28 days water curing. Air curing caused compressive strength losses in all groups. Relative strengths of concretes with mineral admixtures were determined higher than concretes without admixtures at steam curing conditions.  相似文献   

20.
MSW fly ash stabilized with coal ash for geotechnical application   总被引:7,自引:0,他引:7  
The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号