首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分析动力锂离子电池热失控安全问题现状及相关标准、规范的规定,研究建立用于评价锂离子电池热失控火灾防控装置的试验模型。试验模型包括锂离子电池箱结构尺寸、锂离子电池种类及布置、热失控触发方式、火灾防控装置的安装、试验过程数据采集处理等。采用加热和过充两种触发方式使电池发生热失控,模拟不同工况下电池热失控的行为。通过火灾试验及标准模型的建立,初步确定火灾防控装置对扑救锂离子电池火灾有效性和可靠性的评价标准。  相似文献   

2.
以21700 型三元锂离子电池为研究对象,选择空气、氮气及水雾三种环境体系,在热失控条件下对锂离子电池表面温度、逸散出的气体浓度进行在线监测,探究不同环境体系下锂离子电池之间的热量传递与热失控火灾扩展情况。结果表明:不同环境体系对锂离子电池热失控行为有显著影响。惰性气体环境不能有效抑制锂离子电池热失控的发生,却由于氧气含量降低,使热失控过程中二次燃烧阶段缺失,降低其火灾扩展危险性,且热失控的响应时间延长。氮气环境中产生的CO 体积分数峰值为2.049 ×10- 3,分别是空气与水雾环境中的154.6%和180.0%。水雾环境中,由于雾滴在正极处积聚,极易使泄压阀工作效率下降,导致内部压力过高而发生更危险的爆炸。在锂离子电池的运输、储存和应用中,应避免环境中湿度过大。可针对性置换环境气氛或提高散热能力,加强对锂离子电池的安全防护,防止热失控行为的发生。  相似文献   

3.
为研究储能电站电池单元的火灾危险性,针对锂离子电池发生热失控后释放混合气体的爆炸危险性和火灾危险性进行实验研究,测定分析锂离子电池电解液的危险性以及不同环境气氛下锂离子电池的热失控特性.结果表明:按锂离子电池热失控释放主要气体组分配制的混合气体具有较大的爆炸危险性,爆炸下限为6.1%,最大爆炸压力可达0.61~0.76...  相似文献   

4.
针对Halon 1301/1211灭火剂很难抑制航空运输环境锂离子电池热失控的问题,分析低压环境锂离子电池组分材料热反应机理,论述低压环境下锂离子电池热失控放气时间、表面温度、传播过程、点燃时间、质量损失速率、热释放速率等研究进展。展望锂离子电池在航空运输环境下的安全性的研究前景,提出今后研究方向主要是低压环境下热失控过程及产物生成机理、开发新型探测装置早期预警控制、寻求高效灭火介质并设计相关灭火装置防控锂离子电池航空输运火灾。  相似文献   

5.
开展不同低压环境(90、70、50 kPa)下的锂离子电池热失控实验,分别使用加热板、辐射环和辐射板搭建3个锂离子电池热失控实验平台.改变加热条件,观察软包装锂离子电池在低压下热失控火行为、温度变化、热释放速率、总释热量、耗氧量和CO2生成量的变化情况.压力的降低会使得锂离子电池在燃烧阶段氧气不充足,电池内部可燃物质与...  相似文献   

6.
研究废旧锂离子电池短路火灾的触发机理,定量评估电池仓储的危险性.以实际仓储环境中的废旧锂离子电池为研究对象进行短路试验,结果表明废旧锂离子电池正负极耳相互接触危险性远大于通过其他导电物质连接;不同SOH条件下废旧锂离子电池短路试验表明,废旧锂离子电池容量过低可能会使电池更容易发生失控着火;在100%SOC(电池荷电状态...  相似文献   

7.
为了能够在早期快速扑灭锂离子电池火灾,基于火探管材料,选择水作为灭火剂,自行制作了小型的水基型火探管式灭火系统,研究火探管材料扑救锂离子电池火灾的有效性,开展了不同用水量及驱动压力下的锂离子电池火灾抑制试验。结果表明:火探管材料可以在电池热失控触发后迅速响应,释放灭火剂,抑制电池热失控产气燃烧并对电池快速降温;该系统的冷却降温能力与用水量呈正相关,随着用水量增加,电池的表面最高温度与高温持续时间大大降低。当用水量为100 mL时,0.5MPa的压力不能保证系统及时响应,热失控后的电池出现明火;驱动压力逐渐增加时,系统释放的液滴出现明显的溅射现象,这对系统的冷却降温效能带来了负面影响,当驱动压力为1MPa时,系统的冷却降温性能最佳。对于电池模组热失控引发的火灾,火探管材料可以快速响应,释放灭火剂扑灭初期电池火灾,并阻止电池模组热失控传播。  相似文献   

8.
使用自主设计搭建的锂离子电池热失控实验平台,在敞开体系与半封闭体系条件下对18650型锂离子电池开展热失控及传播实验,研究荷电量(SOC)为50%的锂离子电池热失控连锁反应的特征。对热失控发生时间、温度变化趋势、峰值温度、热失控传播特性等进行记录分析。结果表明:敞开体系中单个锂离子电池在173℃时开始发生热失控,最高温度达到689℃;不同体系热失控传播实验中,敞开体系未发生热失控传播,金属包装的半封闭体系发生热失控传播。  相似文献   

9.
针对锂电池在民用航空器飞行中事故频发的危险状况,研究锂电池在民用航空器巡航阶段低压环境下热失控火灾温度特性。选取常压(101 kPa)和巡航低压(20 kPa)环境,在全尺寸实验舱内开展多节18650型锂离子电池热失控实验,分析温度变化及燃烧过程。对比得出,低压会严重影响锂电池热失控火灾环境温度特征;常压环境下多节锂电池热失控火灾伴有燃烧燃爆剧烈火行为现象;巡航低压下几乎无燃烧爆炸等剧烈火行为产生,火灾高温危险性相对较小。  相似文献   

10.
为探究锂离子电池在过充条件下的热安全性问题,以18650型三元锂离子电池为研究对象,开展单次与循环过充不同SOC电池在相同条件下的热安全性对比实验。通过锂离子电池到达初爆和热失控节点所用时间、节点处电池表面温度以及电池表面温度峰值,分析单次与循环过充电池的热稳定性和后果严重程度,为评估过充条件下锂离子电池热安全性提供评价指标,为民用航空运输中使用锂离子电池的设备的检验管理、行业的规范发展提供技术支持。结果表明:单次过充后的锂离子电池与循环过充后相比,初爆时间提前20%,温度升高8%,热失控时间提前15%。在综合分析电池热失控现象、最高温度和质量损失后,得出循环过充后锂离子电池的热稳定性优于单次过充电池,但其热失控后果更为严重。  相似文献   

11.
基于锂离子电池的热失控过程设计实验,分析充放电电流为0.5C、1C、2C、3C时锂离子电池热失控过程的温度变化特征。在此基础上自主研发针对18650型锂离子电池及电池组的热失控三级预警装置。为验证装置的有效性,开展锂离子电池外部短路、低阻值放电实验,结果表明,该装置在应对异常升温的锂离子电池时显示出优良的预警性能,能满足对18650型锂离子电池火灾爆炸预警工作的要求。  相似文献   

12.
锂离子电池热失控是造成电动汽车火灾事故的首要因素。文章概述了车用锂离子电池热失控火灾危险性及抑制方法,并开展了全氟己酮、细水雾对车用三元锂离子电池热失控火灾的灭火试验。结果表明,三元锂离子电池热失控时表面最高温度超过500℃,表面最大升温速率达到18.93℃/s;全氟己酮灭火剂和细水雾均能有效扑灭电池初期明火,但在灭火后数分钟内电池发生复燃。两种灭火剂均能有效降低电池表面最高温度和最大升温速率。  相似文献   

13.
如何有效防止热失控及热蔓延是锂离子电池模组设计的重点.为探究不同散热设计对锂离子电池模组热蔓延的控制能力,以钛酸锂电池模组为实验对象,对自然对流、表面液冷、极耳强迫风冷3种方式的热蔓延阻隔能力进行了研究.通过对比发现,有效抑制热蔓延的关键是增大热蔓延传播路径的阻力与提高散热能力,而表面散热的阻断方式更直接,可以实现对热...  相似文献   

14.
为了探究锂离子电池在不同环境压力下的热特性,实验通过动压变温实验舱和ISO-9705烟气分析仪作为实验条件载体,对100%SOC(荷电状态)的18650圆柱锂离子电池在不同环境压力(30、50、70、90 kPa)下进行热失控实验.结果表明,无论是常压还是低压环境下,由外部热源引起热失控都可分为三个阶段;随着环境压力的...  相似文献   

15.
研究了NCM811三元软包锂离子电池在封闭空间中氧气体积分数为21%和10.64%环境下的热失控特性。实体实验结果表明,氧气体积分数为21%下电池热失控时,先喷射连续火焰再喷射火星,而氧气体积分数为10.64%低氧环境下电池热失控时,电池始终喷射火星,火星未形成连续火焰。电池热失控时喷射的火星在低氧环境中能够短暂燃烧,但火星不能形成连续火焰,表明NCM811三元锂离子电池热失控是一个释氧过程,但电池释放的氧气不足以维持火星的连续燃烧。  相似文献   

16.
为探究瓶组式细水雾灭火装置在存储和使用过程中的压力变化对150 Ah大容量三元锂离子电池热失控抑制效果的影响,搭建了锂离子电池燃烧抑制试验平台,开展了锂离子电池热失控抑制试验。结果表明:试验条件下,细水雾压力越大抑制热失控所需时间越短;1.2 MPa细水雾扑灭锂离子电池明火后存在复燃现象;在成功扑灭锂离子电池热失控明火的条件下,10 MPa细水雾耗水量最少;压力衰减会降低瓶组式细水雾的灭火效果。试验可以为细水雾灭火装置抑制大容量三元锂离子电池热失控的系统选型和运行维护提供参考。  相似文献   

17.
随着我国新能源汽车的不断发展,锂离子电池作为新能源电动汽车最重要的储能设备,由于其能量密度高的特点,存在着燃烧迅速、爆炸并触发相邻电池热失控传递的热安全危险,制约着更规模化的应用和推广,严重威胁着人员的生命财产安全。电池的热失控主要与其电池形状、荷电状态、连接方式等有关。而在不同荷电状态和不同直径的耦合条件下的电池热失控研究是提高锂电池安全性能的研究重点。为了探究锂离子电池热失控传播过程的主要影响机制,采用不同直径(10440型、14500型、18650型、21700型、26650型和32650型)和不同荷电状态(50%、70%、100%)的三元锂离子电池为研究对象,考察其在一维线性排列方式下的热失控传播时间及热失控空间传播速率变化特征,进而深入分析电池直径和荷电状态对热失控传播时间及热失控空间传播速率的影响机制。采用实验数据、传热学理论以及无量纲分析相结合的方法建立了阻断电池热失控传播链的计算模型,进而预判电池间的热失控传播时间,结合无量纲分析得到了不同荷电状态(50%、70%、100%)电池热失控传播时间与电池直径(10,14,18,21,26,32 mm)的特征关系,提出了一维排...  相似文献   

18.
为解决机载哈龙灭火剂不能长时间抑制锂离子电池热失控问题,结合锂离子电池热失控特点与现有灭火剂适用性,筛选出细水雾灭火剂与超细干粉灭火剂为研究对象,通过自主设计试验平台开展细水雾灭火剂与超细干粉灭火剂在相同条件下抑制30%和100%电量锂离子电池热失控对比试验,通过锂离子电池热失控后温度峰值、降温反应时间,考察细水雾灭火剂和超细干粉灭火剂抑制锂离子电池热失控灭火能力和速率。结果表明:细水雾灭火剂抑制锂离子电池热失控比超细干粉抑制能力提升140%左右,灭火速率提升了300%左右,据此提出在抑制锂离子电池热失控方面细水雾灭火剂较超细干粉灭火剂存在明显优势,是取代哈龙灭火剂的选择之一。  相似文献   

19.
电化学储能是开展电网调峰平谷、风/光能并网,实现“双碳”目标的关键环节,在政策导向和市场需求的双擎推动下迅猛发展,国内以磷酸铁锂电池储能预制舱/电站等形式大量涌现。然而,锂离子电池储能系统本身具有燃烧爆炸风险、成组密集布置进一步增加其发生热失控火灾事故的风险,同时由于电化学储能系统涉及固体、液体、气体及电气火灾等多种形式,给灭火救援处置提出了新的挑战。本文对电化学储能电站的安全性进行分析,并通过锂离子电池储能箱的全尺寸实验进行验证,获取其热失控过程中温度、气体浓度等多种参数,揭示锂离子电池储能箱热失控过程的机理,分析规模化电化学储能系统的火灾风险。研究结果显示,磷酸铁锂电池在热失控燃爆过程中电芯温度、环境温度出现明显变化,其中电芯温度可达700 ℃以上,在规模化应用条件下,磷酸铁锂电池热失控风险高,发生燃爆事故的危害大。因此,电化学储能电站需要从产品标准、设计规范、应急处置等方面加强安全管控,尤其需要开展适用于锂离子电池储能系统的预警装置和热管理技术研究。  相似文献   

20.
研究了正极和负极分别为8系高镍三元NCM811(Li(Ni0.8Mn0.1O0.1)O2)和硅碳(SiOx/graphite)的25 Ah软包动力电池过充电触发热失控特征。结合电池材料热特性和热失控产气成分分析,揭示了绝热与非绝热环境下,电池热失控期间内部微观变化和动态产热特性。过充电触发热失控的路径为:过充电超过安全边界电压后电池内部发生副反应和内部极片微短路,引起气体和热量累积,最终电池过热达到热失控临界点。与非绝热环境相比,绝热环境下热失控触发瞬间温度高出37.5 ℃,且触发时长有不同程度的缩短(约为90~500 s)。最后对电池的安全和失效边界做出了界定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号