首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
To facilitate the fabrication of a reliable semiconductor package, the UV/heat dual curing of film adhesives was investigated. The curing system of the epoxy resin affected the film adhesive properties. As the UV/heat dual‐curable epoxy resin, a modified o‐cresol novolak epoxy resin, in which half of the glycidyl groups were substituted by acryloyl groups (OCN‐AE), was applied to the film adhesive. The formulated film adhesive contained acrylic copolymer, OCN‐AE, phenolic aralkyl resin as a heat‐curing agent of the glycidyl groups, and 1‐hydroxycyclohexyl phenyl ketone as a photoinitiator of the acryloyl groups. The formulated reference film adhesive contained unmodified o‐cresol novolak epoxy resin (OCN‐E) in place of OCN‐AE. Formulated film adhesives containing a mixture of OCN‐E and o‐cresol novolak epoxy acrylate were also used as references. The morphology and the film adhesive properties were investigated. In these investigations, the film adhesive of OCN‐AE showed better adhesive properties, lower modulus, and a better stress‐relaxation ability than the referenced adhesives. As a result, a reliable film adhesive for semiconductor packages was successfully developed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
In an attempt to control the adhesive properties of acrylic copolymer‐based pressure‐sensitive adhesives, a series of multifunctional acrylate monomers were added and UV cured. The adhesive compound with a difunctional monomer had increased peel strength after UV curing. On the other hand, the compound with a tri‐ or more functional (polyfunctional) monomer had markedly decreased strength after UV curing. Those adhesives containing any polyfunctional monomer also showed much higher storage modulus than an adhesive containing a difunctional monomer. The greater volume contraction of UV‐cured polyfunctional monomer suggested microvoids at the interface between the adhesive layer and the adherent, resulting in poor strength. Estimated values of the peel strength of UV‐cured adhesives according to the theoretical equations proved that the strength is approximately inversely proportional to the elastic moduli. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2889–2895, 2004  相似文献   

3.
A biomass‐based isosorbide acrylate (ISA) was synthesized in a one‐pot reaction at low temperature with a quite slow dropwise technique using a syringe pump. Using the ISA monomer, UV‐cured transparent acrylic pressure‐sensitive adhesives (PSAs) composed of semi‐interpenetrating networks were prepared. The effect of ISA on the adhesion performance of the resulting acrylic PSAs was investigated by changing the ISA content, while fixing the mole ratio between 2‐ethylhexyl acrylate and 2‐hydroxyethyl acrylate in the PSAs. The prepared acrylic PSAs, with ISA content ranging from 3.2 to 14.3 mol%, were evaluated in terms of 180° peel strength, probe tack, static shear testing and optical properties. Increasing the ISA content in the acrylic PSAs improved the adhesion properties, such as 180° peel strength (0.25–0.32 N/25 mm), shear holding power (0.086–0.023 mm) and probe tack (1.21–2.26 N). Dynamic mechanical analysis indicated that ISA is a good candidate monomer, playing the role of adhesion promoter and hard monomer in the acrylic PSAs. © 2017 Society of Chemical Industry  相似文献   

4.
In the present investigation, silicon containing UV‐curable difunctional monomer was synthesized by reacting 3‐methacryloxy propyl trimethoxysilane (3‐MPTS) with acrylic acid using anhydrous ether as a solvent under inert atmosphere. The synthesized acryloxymethacryloxy silane monomer was characterized by FTIR, 1H‐NMR, and 13C‐NMR spectroscopy. The silane monomer along with 4 wt % photoinitiator (Darocure 1173) was cured under UV‐light for different exposure time. The curing characteristic of the monomer was investigated using FTIR spectroscopy. The conversion of the double bond due to curing has been evaluated from the peak intensity of the C?C double bond (at 1636 cm?1) in the FTIR spectrum considering the peak intensity at 1720 cm?1 due to C?O as internal standard. The maximum double bond conversion is observed to be 72%. The optimum cure time for the silane monomer has been estimated to be 7.8 sec. The UV‐cured sample decomposes at 440°C. The char residue is 35% at 700°C. The synthesized UV‐curable silane monomer may be useful for UV‐coating formulations, for fabrication of 3D‐objects by lithographic technique and as a precursor for organic–inorganic hybrid materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
UV-curable acrylic pressure-sensitive adhesives (acrylic PSAs) have many applications in industry. As the Si-wafers become thinner, the acrylic PSAs for MCP need to show proper adhesion and leave little residue on the Si-wafer after UV irradiation when released from the dicing tapes. Strong adhesion is required in the dicing process to hold the Si-wafer before UV irradiation. On the other hand, weak adhesion strength is required after UV irradiation to prevent damage to the Si-wafers during the pick-up process. This study employed semi-interpenetrating polymer network-structured dicing of acrylic PSAs in the Si-wafer manufacture process. The binder PSAs contained 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AA). The adhesion performance of the peel strength on a Si-wafer was examined as a function of the UV dose. The results showed that the abovementioned two requirements were achieved using semi-IPN dicing acrylic PSAs using a hexafunctional acrylate monomer and a UV-curing system. FE-SEM and XPS revealed little residue on the wafer after removing the tape. This paper suggests the optimal conditions for the curing agent, the additional hexafunctional monomer, photoinitiator and the coating thickness.  相似文献   

6.
湿固化压敏胶的合成研究   总被引:1,自引:0,他引:1  
以丙烯酸类单体为原料制备了一种具有较高剪切强度的湿固化型压敏胶。较详细地研究了湿固化方法、单体和溶剂等因素对产物性能的影响。研究结果表明,采用硅氧烷结构的湿固化方法,当湿固化单体用量为5.0%时,所得压敏胶在湿固化前具有良好的压敏性,贮存稳定期超过6个月,经湿固化后,剪切强度可达1.47MPa。  相似文献   

7.
One important issue for the acrylic bone cements concerns the radiopacity, which may be achieved by different ways. In this work, a new bromine‐containing acrylic monomer, the 2‐(2‐bromopropionyloxy) propyl methacrylate (BPPM), was synthesized and proposed to be used for providing radiopaque bone cements. Different acrylic bone cements were realized by partially replacing the methyl methacrylate (MMA) monomer phase with 5–20% w/w of BPPM‐comonomer. The effect of this comonomer on the curing parameters of acrylic bone cements, on their thermal and rheological properties, water absorption, density, contact angle, compression tests, and radiopacity was studied. It appears that the presence of BPPM does provide radiopacity, improves the curing parameters by decreasing the maximum curing temperature and increasing the setting time. The new BPPM‐acrylic bone cements exhibit lower glass transition temperature and better thermal stability when compared with the classical radiolucent acrylic cements. Rheological measurements have shown that 10–20% w/w of BPPM in the liquid phase of acrylic bone cement formulations increase its flexibility, and may also induce a slight crosslinking reaction during the curing phase. BPPM‐modified acrylic bone cements present lower polymerization shrinkage and higher compression strength, and similar water uptake, porosity, and water contact angle as the radiolucent PMMA‐cements. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Heat and ultraviolet (UV)‐induced bonding and debonding (BDB) adhesives were designed and prepared through blending an epoxy resin, diglycidyl ether of bisphenol A (DGEBA) with an epoxy acrylate resin, bisphenol‐A epoxy acrylate resin (BEA). The variation of the chemical structure of DGEBA and BEA in the sequential heat‐ and UV‐curing processes was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR results indicate that DGEBA and BEA successfully took part in both the heat‐curing and UV‐curing processes. The effects of the mass ratio of BEA to DGEBA, amount of heat‐curing agent, type of diluents, and UV irradiation time on the BDB properties of BDB adhesive were systematically investigated. The results show that the bonding strength increases with the decrease of the mass ratio of BEA to DGEBA and with the increase of the amount of heat‐curing agent in a certain range. The debonding strength decreases with the increase of the mass ratio of BEA to DGEBA. The mass ratio of BEA to DGEBA was set at 10 to ensure the ratio of the bonding strength to debonding strength greater than 10 times. The debonding strength of BDB adhesives also depends on the UV irradiation time, decreasing with the increase of UV irradiation time in a certain range. Based on the FTIR results and the dependence of the bonding and deboning strengths on the reaction conditions, a possible BDB mechanism of BDB adhesive was proposed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46435.  相似文献   

9.
Pressure sensitive adhesives (PSAs) with higher thermal stability were synthesized by crosslinking acrylic copolymer with naphthyl curing agent. The acrylic copolymer was synthesized for a base resin of PSAs by solution polymerization of 2-ethylhexyl acrylate, ethyl acrylate, and acrylic acid with N,N′-azobisisobutyronitrile as an initiator. The acrylic copolymer was further modified with glycidyl methacrylate to have the vinyl groups available for UV curing. Thermal stability of acrylic PSAs was improved noticeably with increasing naphthyl curing agent content and UV dose mainly due to the extensive formation of crosslinked structure in the polymer matrix. Although the peel strength decreased with UV curing of acrylic polymer, a proper balance between the thermal stability and the adhesion performance of PSAs was obtained by controlling the UV curing with naphthyl curing agent content and UV dose.  相似文献   

10.
The development of adhesive tapes that can be applied at high temperature is a major challenge for pressure-sensitive adhesives (PSAs). To date, the heat resistance of PSAs has not been investigated in sufficient details. In this study, based on the relationship between curing structures and properties, a series of acrylic PSAs with excellent heat resistance were prepared. Commercial zirconium acetylacetonate (ZrACA), desmodur L75 (L75), and N,N,N′,N′-tetrakis(2,3-epoxypropyl)-m-xylene-α,α′-diamine (GA240) were employed as heat-curing agents. Trimethylolpropane triacrylate (TMPTA) was used as ultraviolet (UV)-curing agent to form semi-interpenetration polymer network structures after UV exposure. The influences of different curing agents on the thermal stability, adhesion performance, gel fraction, and viscoelastic of PSAs were explored. The results showed that the PSAs cured by L75, GA240, and TMPTA exhibited excellent heat resistance. Especially, when the content of L75 was 1.0 wt %, the PSAs could be peeled off substrate without residues on substrate surface after treatment at 170 °C for 4 h, while the nonmodified acrylic PSAs possessed residues after treatment from 110 °C. The cured PSAs adhesive performance was evaluated showing maximum 180° peel strength of 16.7 N/25 mm comparable to current PSAs. These resulting PSAs showed high heat resistance and they are suitable for a broad range of special fields. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47310.  相似文献   

11.
Stable emulsions of emulsifier/N‐methylpyrrolidone‐free crosslinkable waterborne polyurethane–acrylates (C‐WBPUAs) with various acrylic monomer contents (0, 10, 20, and 30 wt %) for footwear adhesive materials were successfully prepared in this study. The effects of the acrylic monomer content on the shelf stability, mean particle size, and viscosity of the C‐WBPUA emulsions; the tensile properties and dynamic mechanical thermal properties of the C‐WBPUA film samples; and the adhesive strengths between the upper (synthetic leather) and the sole (ethylene vinyl acetate rubber) in both the dry and wet states of the formulated adhesives (C‐WBPUA emulsion–thickener–hardener) were examined. The adhesive strengths of the formulated adhesives for footwear (leather–sole) in both the dry and wet states increased with increasing acrylic monomer content up to 20 wt %; after this, they almost levelled off. Thus, C‐WBPUA20 and C‐WBPUA30, where the number indicates the acrylic monomer content, can be recommended as high‐performance adhesive materials for footwear. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43758.  相似文献   

12.
水性丙烯酸酯汽车涂料制备及其漆膜性能研究   总被引:1,自引:0,他引:1  
合成了水性丙烯酸树脂并用其配制了汽车罩光清漆,研究了硬/软单体配比、丙烯酸单体的用量、芳香酯单体的用量、氨基树脂固化剂/丙烯酸树脂的配比及固化条件对漆膜性能的影响。结果发现,硬/软单体配比为39/35,丙烯酸质量分数为6%,甲基丙烯酸苄酯(BNMA)质量分数为12%,固化剂/树脂配比为40/100,固化温度及时间分别为140℃和30 min时,固化漆膜具有优良的综合性能,其光泽度达到98(60°),冲击强度为0.50 kJ/m,硬度为2H,附着力为0级,耐溶剂、耐紫外老化性能良好。FT-IR分析显示氨基树脂/丙烯酸树脂漆膜固化后表征羟基和甲氧基的吸收峰强度显著变弱,表明氨基树脂和丙烯酸树脂发生了交联固化。  相似文献   

13.
Abstract

As Si-wafers, as used in the electronic industry, become thinner and thinner, it is important to investigate the conditions which are suitable for easily peelable acrylic dicing tapes. In the ‘pick-up’ process, the adhesion strength decreased after UV irradiation as a result of polymer network formation. In this study, interpenetrating polymer network (IPN) structured acrylic pressure sensitive adhesives (PSAs) were investigated with two different types of UV irradiation — a steady UV irradiation and a pulsed UV irradiation of 100 mJ/cm2. The PSAs binder contained 2-ethylhexyl acrylate (2-EHA), acrylic acid (AA) and 3-methacryloxypropyl trimethoxysilane (3-MPTS). The hexafunctional monomer, dipentaerythritol hexacrylate (DPHA) and 3-methacryloxypropyl trimethoxysilane (3-MPTS) were used as diluent monomers. The adhesion performance as related to the peel strength and the tack properties on the Si-wafer substrates, was examined with increasing UV dose. The effect of UV-curing on the behavior and viscoelastic properties of the ‘pick-up’ acrylic tapes was investigated using Fourier transform infrared — attenuated total reflectance spectroscopy (FTIR–ATR) and an advanced rheometric expansion system (ARES). It is also necessary to consider the contaminants on the Si-wafer substrates left behind after releasing the dicing tapes, because of possible damage to the Si-wafers and subsequent processes. Field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) analysis revealed little residue on the Si-wafer after removing the tapes and after more than the specific level of UV dose.  相似文献   

14.
Low levels of functional acrylic monomers were incorporated into a core‐shell acrylic copolymer by seeded emulsion polymerization. The increase in glass transition temperature, Tg, from DSC measurement has showed that although certain amount of crosslinking reactions have occurred during the polymerization and isolation of the copolymer, the dried copolymer films could undergo further curing by UV irradiation. The structure and amount of the functional monomer, concentration of photoinitiator, and the extent of UV exposure have exerted significant influence on the Tg of the dry copolymer films. Because of the relatively low level of incorporated unsaturation, there was no significant change in FTIR during the curing of the film. Further, crosslinking of the copolymer film induced by UV irradiation has significantly increased the resistance to swelling in alkaline solution, although the gel content remained the same. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2317–2322, 2006  相似文献   

15.
合成了水性丙烯酸树脂并用其配制了汽车罩光清漆,通过FT-IR、DSC,TG和SEM分析研究了不同固化剂、固化剂用量对漆膜性能的影响。结果表明,Luwipal066作为固化剂,固化剂/树脂质量比为40/100,固化温度及时间分别为140℃和30min时,固化漆膜性能最好,光泽度达到98/60°,冲击强度为50kg·cm,硬度为2H,附着力为0级,耐溶剂、耐紫外老化性能良好,指标达到汽车罩光漆膜的要求。漆膜固化后表征羟基和甲氧基的吸收峰强度显著变弱,表明氨基树脂和丙烯酸树脂发生了交联固化。随着硬/软单体配比和固化剂/树脂配比的增加,固化漆膜的Tg升高,具有良好的热稳定性。  相似文献   

16.
Hydrogenated rosin epoxy methacrylate (HREM), based on hydrogenated rosin and glycidyl methacrylate (GMA), was synthesized for use as an advanced tackifier in the UV‐crosslinking pressure sensitive adhesives (PSAs) system. The HREM, as a tackifier, contained UV‐curing sites; thus, allowed photopolymerization to occur by UV irradiation. This UV‐curable tackifier, HREM, can improve the curing rate and adhesion performance of UV‐crosslinking PSAs. The characteristics of HREM were analyzed by GPC and DSC and its synthetic mechanism studied using FTIR and 1H NMR; the characteristic peaks of hydrogenated rosin and GMA vanished, but new peaks for HREM appeared. The PDI and the Tg by DSC were 1 and ?25.6°C, respectively. The photopolymerization of HREM was studied using photo‐DSC. Heat flow was observed during UV irradiation, and the curing rate and conversion both increased with rising photoinitiator content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
聚氨酯丙烯酸酯齐聚物制备紫外光固化胶粘剂   总被引:3,自引:0,他引:3  
按正交实验的方法,采用自制的聚氨酯改性丙烯酸酯齐聚物(PUA)与改性剂,研制出了紫外光(UV)快速固化胶粘剂,并对其影响因素进行了简要分析。结果表明,由PUA改性的UV固化胶粘剂具有较好的粘接性能。在所考察的影响因素中,对胶粘剂强度的影响程度大小顺序为:自制改性剂>1,6-己二醇二丙烯酸酯(HDDA)/三羟甲基丙烷三丙烯酸酯(TPGDA)>聚酯丙烯酸酯(EB-524)/PUA齐聚物≈多官能度单体>单官能度单体=KH570>光引发剂。  相似文献   

18.
Photoreactive solvent‐borne pressure‐sensitive adhesives are not commercially available in the market. The reason for it is that the UV‐initiated crosslinking has sense only in the case of solvent‐free self‐adhesive systems. Investigations conducted in Institute of Chemical Organic Technology have shown that the photoreactive solvent‐borne acrylic PSA are conventional crosslinked solvent‐borne acrylic PSA used as crosslinking agents typical metal chelates as titanium acetylacetonate (TiACA), aluminum acetylacetonate (AlACA) or thermal reactive crosslinker melamine‐formaldehyde resin Cymel 303 clear considered. The main purpose of the investigation was to study the influence of diverse photoinitiators on main properties, such as shrinkage, tack, peel adhesion, and shear strength of solvent‐based acrylic pressure‐sensitive adhesives. The interesting alternative to conventional photoinitiators is unsaturated photoinitiators described in this article. Following unsaturated photoinitiators were used: 4‐acryloyloxy benzophenone, 4‐acryloyloxyethoxy benzophenone, and 4‐acryloyloxybutoxy benzophenone. The influence of the crosslinking agents or crosslinking methods was determined in relation to the reaction time and to the concentration versus adhesion properties. The increase of photoinitiator concentration causes in the decrease of the shrinkage. Increasing the UV dose during the crosslinking of acrylic PSA film leads clearly to better shrinkage resistance. The best results of the lowest shrinkage value of 0.35% were given by using 4‐acryloyloxy benzophenone. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A novel photopolymer for the fabrication of high‐resolution volume‐phase holograms, which primarily are used for holographic optical elements, is reported. This photopolymer consists of a thermosetting resin as a polymeric binder, a polyfunctional monomer, a photoinitiator, and a sensitizing dye. The chemistry to form images is based on the polymerization of an acrylic monomer initiated by radical species while making the holographic exposure, and accelerated diffusion transfer of the polymerized monomer with postexposure baking, and of a bisphenol‐type epoxy resin as a binder initiated by cations with UV exposure, which are generated through photodecomposition of a diaryliodonium salt‐sensitized 3‐ketocoumarin dye. Exposure of these photopolymer films to an Ar+ laser beam emitting 514.5 nm light at 60–150 mJ/cm2 and subsequent heat treatment resulted in a refractive index alteration according to the light intensity. With this dry process, high diffraction efficiency and heat‐stable holograms can be formed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2189–2200, 2000  相似文献   

20.
Poly(butyl acrylate‐vinyl acetate‐acrylic acid) based acrylic pressure sensitive adhesives (PSAs) were synthesized by solution polymerization for the fabrication of high performance pressure sensitive adhesive tapes. The synthesized PSAs have high shear strength and can be peeled off substrate without residues on the substrate at temperature up to 150°C. The PSAs synthesized in the present work are single‐component crosslinked and they can be used directly once synthesized, which is convenient for real applications compared to commercial multi‐component adhesives. The results demonstrated that the viscosity of the PSAs remained stable during prolonged storage. The effects of the preparation conditions such as initiator concentration, cross‐linker amount, organosiloxane monomer amount and tackifier resin on the polymer properties, such as glass transition temperature (Tg), molecular weight (Mw), surface energy and shear modulus, were studied, and the dependence of the adhesive properties on the polymer properties were also investigated. Crosslinking reactions showed a great improvement in the shear strength at high temperature. The addition of tackifier resin made peel strength increase compared to original PSAs because of the improvement of the adhesion strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40086.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号