首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了硫酸铵-硫氰酸铵-正丙醇体系萃取分离钯及钯与常见金属离子的分离条件.结果表明,控制pH为2.0,在有3.5 g (NH4)2SO4存在条件下,当硫氰酸铵(0.1 mol/L)和正丙醇的用量均为2.0 mL时,Pd (Ⅱ)可以被萃取,而Zn (Ⅱ),Cu (Ⅱ),Cd (Ⅱ),Ni (Ⅱ),Co (Ⅱ)等金属离子不被萃取,由此实现了Pd (Ⅱ)与这些金属离子的定量分离,Fe (Ⅲ)有少量被萃取.  相似文献   

2.
潘路  古国榜 《黄金》2008,29(4):56-59
研究了采用DBC作为萃取剂,从酸性溶液中萃取分离Pd(Ⅱ),Pt(Ⅱ)的性能。分别考察了DBC体积分数、混合液的酸度、萃取时间、相比(O/A)对萃取分离Pd(Ⅱ),Pt(Ⅱ)性能的影响。通过正交实验得出Pd(Ⅱ)与Pt(Ⅱ)萃取分离的适宜条件,即DBC体积分数为10%、萃取时间t=10m in、相比O/A=1、盐酸浓度为2mol/L,Pd(Ⅱ)与Pt(Ⅱ)的分离萃取系数为320。实验分别研究了采用氨水进行反萃Pd(Ⅱ)和采用NaC l进行反萃Pt(Ⅱ)的性能,得出了Pd(Ⅱ)和Pt(Ⅱ)的反萃取条件。  相似文献   

3.
马万山  郭鹏 《稀有金属》2006,30(4):574-576
研究了硫酸铵存在下结晶紫-碘化钾体系萃取钯(Ⅱ)的行为及其与一些金属离子分离的条件。结果表明,当溶液中硫酸铵、碘化钾、结晶紫的浓度分别为0.05 g.ml-1,2.0×10-2mol.L-1,2.0×10-4mol.L-1,pH=4.0时,Pd(Ⅱ)可与Ga(Ⅲ),Mn(Ⅱ),Ni(Ⅱ),Al(Ⅲ),Co(Ⅱ),Rh(Ⅲ),U(Ⅵ),Fe(Ⅱ)离子定量分离,对合成水样和钯镍电镀液中的钯进行了定量萃取分离测定,结果满意。  相似文献   

4.
研究了水-正丙醇析相萃取Pd(Ⅱ)的行为及Pd(Ⅱ)与一些金属离子分离的条件。结果表明, 硫酸铵能使正丙醇的水溶液分成两相,在分相过程中,Pd(Ⅱ)与溴化钾生成的PdBr42-与质子化正丙醇 (C3H7OH2+)形成缔合物PdBr42-[C3H7OH2+]2能被正丙醇相完全萃取。当溶液中正丙醇的体积分数、溴化钾浓度和硫酸铵的质量浓度分别为30 %, 7.0×10-3 mol/L, 0.2 g/ mL且pH 2.0时, Pd的萃取率达到96.7%以上,而Ag(Ⅰ)、Cu(Ⅱ)、Fe(Ⅲ)、V(Ⅴ)、Ni(Ⅱ)、W(Ⅵ)、Al(Ⅲ)、Pb(Ⅱ)、Cr(Ⅲ)、U(Ⅵ)、Mg(Ⅱ)、Bi(Ⅲ)基本不被萃取,实现了Pd(Ⅱ)与上述金属离子的分离。对合成水样和钯镍电镀液中的钯进行了定量萃取分离和测定,获得了满意结果。  相似文献   

5.
研究了溴化四丁基铵-硫氰酸铵-水体系浮选分离Pd(Ⅱ)的行为及与一些金属离子的分离条件。研究表明,在水溶液中,Pd(Ⅱ)与硫氰酸铵、溴化四丁基铵形成不溶于水的三元缔合物Pd(SCN)_4~(2-)·2TBA~+,此三元缔合物沉淀可浮于水相上层形成界面清晰的液-固两相。当硫氰酸铵、溴化四丁基铵的浓度分别为5.0×10~(-3)mol/L,2.0×10~(-3)mol/L,在pH 1~4时,能使Pd(Ⅱ)的浮选率达到100%,Pd(Ⅱ)可与Cu(Ⅱ),Zn(Ⅱ),Ni(Ⅱ),Cd(Ⅱ),Cr(Ⅲ),Mn(Ⅱ)  相似文献   

6.
研究了碘化钾-溴化十六烷基吡啶(CPB)-水体系浮选分离钯的行为及与一些金属离子分离的条件。结果表明,在水溶液中,Pd(Ⅱ)与碘化钾、溴化十六烷基吡啶形成不溶于水的三元缔合物PdI42-.2CPB+,此三元缔合物可浮于水相上层,分成界面清晰的液-固两相。当溶液中碘化钾、溴化十六烷基吡啶的浓度分别为1.5×10-2mol/L,1.5×10-3mol/L,pH3.0时,Pd(Ⅱ)可与Zn(Ⅱ),Mn(Ⅱ),Al(Ⅲ),Ni(Ⅱ),Co(Ⅱ),Fe(Ⅱ)离子等定量分离,且Pd(Ⅱ)的浮选率达到99.4%以上。对  相似文献   

7.
CTMAB与TBP萃取钯(Ⅱ)的研究   总被引:1,自引:0,他引:1  
潘路  张锋 《稀有金属》2006,30(5):715-718
研究了磷酸三丁酯(TBP)存在下十六烷基三甲基溴化铵(CTMAB)萃取Pd(Ⅱ)的性能。具体研究了CTMAB浓度、TBP浓度、相比、酸度、时间等对Pd(Ⅱ)萃取性能的影响。水相中钯的浓度为1.000 g.L-1,CTMAB浓度为0.2 mol.L-1时,Pd(Ⅱ)的萃取率达到92.7%。测定Pd(Ⅱ)的饱和容量大于5 g.L-1。确定了CTMAB萃取钯的反应方程式为:PdCl42-+RNBr→[PdCl4.RN]-+Br-。研究了CTMAB与TBP对Pd(Ⅱ)协同萃取的性能,CTMAB,TBP的浓度分别为0.16,0.04 mol.L-1(二者的总浓度为0.2 mol.L-1)时,协萃效应达到最大,协萃系数为3.086。氨水能有效地反萃Pd(Ⅱ)。载钯有机相中钯浓度为0.96 g.L-1,氨水的浓度为1 mol.L-1时,钯的反萃率达到97.6%。  相似文献   

8.
研究了以2-(5-溴-2-吡啶偶氮)-5-二乙氨基酚(5-Br-PADAP)为显色剂,Triton X-100为增溶剂的多波长K系数法同时测定工业废水铜(Ⅱ)、铁(Ⅲ)和铁(Ⅱ)含量的方法。实验结果表明,铜(Ⅱ)、铁(Ⅲ)和铁(Ⅱ)的测定波长分别选用556 nm,594 nm,470 nm,在pH 5.2HAc-NaAc的缓冲体系中,测量效果较好。测定的线性范围为0.08~0.8μg/mL。测定0.2μg/mL Cu(Ⅱ)、Fe(Ⅲ)和Fe(Ⅱ),在六偏磷酸钠存在下,小于40μg/mL的Ca2+,Mg2+  相似文献   

9.
碘化钾-甲基紫-水体系液-固分离铅(Ⅱ)的研究   总被引:2,自引:2,他引:0       下载免费PDF全文
研究了碘化钾-甲基紫-水体系液-固分离铅(Ⅱ)的行为及其与常见离子的分离条件。结果表明,当0.1mol/L碘化钾溶液和1.0×10-3mol/L甲基紫(MV)溶液的用量分别为0.6mL,0.2mL时,Pb(Ⅱ)能与I-,MV+形成(MV)2(PbI4)沉淀,而Cu(Ⅱ),Zn(Ⅱ),Mn(Ⅱ),Ni(Ⅱ),Cd(Ⅱ),Co(Ⅱ),Fe(Ⅱ),Al(Ⅲ)等离子在此条件下不形成沉淀,实现了Pb(Ⅱ)与这些常见离子之间的定量分离。应用本法对合成水样中微量铅(Ⅱ)进行定量分离测定,结果满意。  相似文献   

10.
研究了氯化钠-正丙醇-硫氰酸铵-水体系析相萃取分离和富集Sn(Ⅳ)的行为及与一些金属离子分离的条件。结果表明, 氯化钠能使正丙醇的水溶液分成两相,在分相过程中,Sn(Ⅳ)和硫氰酸铵生成的[Sn(SCN)5~6][(5~6)-4]-与质子化正丙醇C3H7OH2+ 形成的缔合物[Sn(SCN)5~6][C3H7OH2]1-2能被正丙醇相完全萃取。固定溶液酸度为pH 2,当正丙醇、硫氰酸铵和氯化钠的浓度分别为30%(V/V)、0.09 mol/L和0.17 g/mL时, Sn(Ⅳ)的萃取率在98.3%以上,Fe(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ)、Al(Ⅲ)、Mg(Ⅱ)、Mn(Ⅱ)、Ce(Ⅲ)、Cr(Ⅲ)、Zn(Ⅱ)、Ag(Ⅰ)、Cd(Ⅱ)和V(Ⅴ)不被萃取,实现了Sn(Ⅳ)与上述金属离子的分离。方法用于Pb-Ca-Sn-Al合金中Sn的分离和测定,平均回收率为97.4%,相对标准偏差(n=7)为2.1%。  相似文献   

11.
三正辛胺(TnOA)萃取Cr(Ⅵ)的机理研究   总被引:1,自引:0,他引:1  
段群章 《湿法冶金》2001,20(3):141-148
研究了用TnOAnCH3(CH2)6CH3H2SO4体系和TnOACHCl3H2SO4体系萃取Cr(Ⅵ)的机理及萃合物组成.考察了水相酸度,Cr(Ⅵ)、萃取剂与SO2-4浓度,萃取时间及温度等因素对萃取的影响.用饱和法、摩尔比法、等摩尔系列法和IR法确定了萃合物的组成和萃取平衡机理.结果表明,萃取过程属阴离子交换机理,萃合物的组成因pH值和c(Cr(Ⅵ))不同而异;pH值不同,Cr(Ⅵ)的型体也不一样;当c(TnOA)一定,pH=1.0,c(Cr2O2-7)=0.1000mol/L时,形成的萃合物是(R3NH)2Cr2O7(2∶1);当pH=-1.0,c(Cr2O2-7)=0.01945mol*L-1时,形成的萃合物是R3NHHCrO4(1∶1);SO2-4不被萃取,c(TnOA)及时间和温度对Cr(Ⅵ)的萃取影响不大.试验结果与Deptuta认为的Cr(Ⅵ)的型体为Cr2O2-7,Федоров和Жданов认为的Cr(Ⅵ)的萃取型体为CrO2-4的结论不同.  相似文献   

12.
研究了溴化四丁基铵-溴化钾体系分离Pd(Ⅱ)的行为及与其他金属离子分离的条件。结果表明,在水溶液中,Pd(Ⅱ)与溴化钾和溴化四丁基铵形成不溶于水的三元缔合物PdBr24-.2TBAB+,此三元缔合物沉淀浮于盐水相上层形成界面清晰的液-固两相。当溶液中溴化钾、溴化四丁基铵的浓度分别为1.5×10-2mol/L和2.0×10-3mol/L,pH 2.0时,Pd(Ⅱ)的浮选率达到99.5%以上。而Pt(Ⅳ),Ru(Ⅲ),Fe(Ⅲ),Rh(Ⅲ),Al(Ⅲ),Cd(Ⅱ),Co(Ⅱ),Hg(Ⅱ),Mn(Ⅱ),Pb(Ⅱ  相似文献   

13.
采用二-(2-乙基己基)磷酸(简称D2EHPA)作为萃取剂,以磺化煤油为稀释剂,研究了硫酸盐溶液体系中萃取分离Zn(Ⅱ),Cd(Ⅱ)的性能,考察了萃取时间、pH、萃取剂浓度、水相锌镉离子浓度、温度等因素对锌、镉萃取分离过程的影响.实验结果表明,D2EHPA/煤油体系对锌萃取分离效果良好.  相似文献   

14.
研究了在磷酸介质中 Cu(Ⅱ)抑制 Mn(Ⅱ)对二安替比林基邻溴苯基甲烷(DAoBM)与铬(Ⅵ)的显色反应动力学条件,建立了一种利用灵敏的阻催反应选择性测定痕量 Cu(Ⅱ)的新方法,可测0.5~5.0μg/25ml范围的铜(Ⅱ)。方法检测限为2.0×10~(-8)g/ml。  相似文献   

15.
以分光光度法研究了阴离子交换树脂分离富集Cr(Ⅵ)的最佳条件,优化选择了上柱酸度和洗脱剂,即在pH 4.0 H2SO4介质条件下上柱,用20 g/L NaOH-90 g/L NaCl洗脱。对主要干扰元素铁、钒、钼的最大允许量进行了探讨。微型交换柱对Cr(Ⅵ)的富集倍数为33.3。Cr(Ⅵ)质量浓度在0~0.08μg/mL范围内服从比尔定律,相关系数为0.999 8,检出限为0.002 3μg/mL。方法用于测定含铬工业废水和标准溶液中的Cr(Ⅵ),相对标准偏差为6.1%和2.1%,测定值与原子吸收光谱法的结果一致。  相似文献   

16.
研究了三异辛胺 Span 80 甲苯乳状液膜迁移、分离Mo(Ⅵ )的行为。确定了最佳迁移、分离条件 :当膜相组成为 0 0 2mol/LTOA 3% (W/V)Span80 ,内相为 0 0 5 0mol/LNaOH ,外相为 5 0× 10 -3 ~ 2 0× 10 -2 mol/LHCl时 ,实现了Mo(Ⅵ )与Fe(Ⅱ )、Co(Ⅱ )、Ni(Ⅱ )、Mn(Ⅱ )、Zn(Ⅱ )、Cd(Ⅱ )、Cu(Ⅱ )、Pb(Ⅱ )的分离  相似文献   

17.
研究了新试剂N烯丙基N’-安替比林硫脲与钯(Ⅱ)的显色反应。结果表明,在pH3.4~4.2的HAc-NaAc缓冲体系中,在十二烷基硫酸钠的存在下,Pd(Ⅱ)与新试剂形成2:3的茶色水溶性络合物,其最大吸收峰位于292.0nm,表观摩尔吸光系数ε2920=3.64×104,钯含量在0~80μg/25mL范围内服从比尔定律。方法灵敏、简便、选择性高,生成的络合物稳定性好。用于样品测定,结果令人满意。  相似文献   

18.
金属回收液中Fe含量低,Ni、Co、Cr、W、Mo含量高,严重干扰Fe(Ⅱ)和Fe(Ⅲ)的测定.本法拟定在≥6N盐酸体系中,用乙酸乙酯萃取Fe(Ⅲ)与乙酸乙酯所形成的络合物,Fe(Ⅱ)与杂质进入水相;用硝酸氧化水相中的Fe(Ⅱ)为Fe(Ⅲ),再用乙酸乙酯革取.用2%盐酸羟胺反萃取有机相中的Fe_4(Ⅲ)入水相,并还原为Fe(Ⅱ),用邻菲啰啉显色测定.此法可使Fe(Ⅱ)和Fe(Ⅲ)定量分离,又使它们与杂质元素分离.Cr(Ⅵ)和Mo(Ⅵ)可使Fe(Ⅱ)氧化为Fe(Ⅲ),干扰测定,故试液中Cr(Ⅵ)和Mo(Ⅵ)  相似文献   

19.
使用电感耦合等离子体原子发射光谱法(ICP-AES)直接测定磷矿及磷肥中Cd和Pb,受P和Ca等共存元素的干扰。当待测液中P和Ca的质量浓度分别大于Cd和Pb的10倍时,直接测定Cd、Pb结果的相对误差均大于5%,而磷矿及磷肥中P和Ca相对于Cd和Pb的含量远高于此倍数。研究表明,在pH≈2并含有0.01g/mL抗坏血酸和0.20mol/L KI试液中,强碱性阴离子交换纤维(SBAEF)能够定量萃取试液中的Cd(Ⅱ)和Pb(Ⅱ),而Ca~(2+)、PO_4~(3-)和其他共存的阳离子不被萃取;被SBAEF萃取的Cd(Ⅱ)和Pb(Ⅱ),能够通过0.07mol/L EDTA溶液定量洗脱后,使用ICP-AES测定,从而消除了P和Ca等共存组分对测定的干扰。Cd和Pb的质量浓度分别为1.00×10~(-3)~2.00μg/mL和2.00×10~(-2)~40.0μg/mL时与其发射强度呈线性,线性相关系数R2分别为0.999 294和0.999 984。方法中Cd和Pb的测定下限分别为6.00×10~(-2)和2.00×10-1μg/g。按照实验方法测定模拟样品中Cd和Pb,测定值和理论值相吻合。方法应用于实际磷矿和磷肥样品中Cd和Pb的测定,结果的相对标准偏差(RSD,n=5)不大于4.4%。分离方法也适用于火焰原子吸收光谱法(FAAS)测定磷矿和磷肥中Cd和Pb。  相似文献   

20.
吐温80-(NH4)2SO4-PAR体系液-固萃取分离测定钯   总被引:7,自引:2,他引:5  
王碧  覃松  阮尚全  张铭让 《稀有金属》2002,26(4):317-320
以水溶性螯合剂 PAR 为萃取剂,在高聚物吐温 80 水溶液中,选择(NH4)2SO4 作分相盐,用 EDTA-NaOH 溶液调节pH值,考察了Pd(Ⅱ)、Rh(Ⅲ)、Pt(Ⅳ)的液-固萃取行为,确定了吐温 80-(NH4)2SO4-PAR 体系中 Pd(Ⅱ) 与 Rh(Ⅲ)、Pt(Ⅳ) 的分离条件,同时建立了 Pd(Ⅱ) 的测定方法.Pd(Ⅱ)-PAR 配合物表观摩尔吸光系数为 4.23 ×104 L·mol-1·cm-1,钯量在 0~23.20 μg/10.00 ml 范围内符合比耳定律,检出限为 0.026 μg/10.00 ml.方法选择性好,易与钯共存的常见阴、阳离子不干扰测定;用拟定方法分离测定合成样和实际样,结果满意.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号