首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
低全球变暖潜能值(Global Warming Potential,GWP)制冷剂R1234ze(E)作为R410A较为理想的替代品而被关注。但是纯R1234ze(E)的热力学性能和传输特性并不出色。近期研究表明R1234ze(E)中混入R32成分可以有效提高其热力学性能。本文在空气源热泵测试实验系统中以R1234ze(E)/R32(质量配比为27%/73%,命名为L-41b,GWP为493)混合工质为研究对象,考察了R1234ze(E)和混合工质L-41b在实际热泵系统中的运行性能。与常规制冷工质R410A的运行性能在相同工况下进行了对比,在相对高温区中L-41b对R410A具有良好的替代性能。研究结果为R1234ze(E)及其与R32混合工质的产品设计开发提供了参考数据。  相似文献   

2.
全球变暖指数(Global Warming Potential,GWP)为1的R1234yf和R1234ze(E),作为新一代的绿色环保替代制冷剂,因其环保特性及良好的系统性能而被广泛关注和研究。其重要性导致许多学者对其产生兴趣,而展开了大量的研究。这些研究主要集中于物理性质、传热特性以及系统性能等方面。因这两种工质在物性上与R134a相似,也有许多学者对其在R134a替换的可能性展开研究。本文在大量文献调研的基础上,简要回顾了R1234yf和R1234ze(E)的研究和应用现状。  相似文献   

3.
新型制冷剂R1234ze(E)因较低的GWP备受制冷行业关注,其与R32的混合工质作为热泵系统制冷剂的研究也在逐步展开,本文以R1234ze(E)/R32(质量配比:27%/73%,命名为L-41b,GWP=493)混合工质为研究对象,在人工环境室中设计并搭建了空气源热泵测试系统,对比研究了L-41b与R410A在热泵系统中的性能系数COP、压缩机功耗、制热量、排气温度和循环压比。结果表明:当恒定冷凝温度,蒸发温度从5℃增加到13℃时,R410A和L-41b的COP偏差从8.6%缩小到2.8%。当恒定蒸发温度,冷凝温度从30℃提高到42℃时,L-41b的运行性能系数COP的降幅小于R410A,变工况实验表明在相对高温区L-41b替代R410A具有较好的替代性能。  相似文献   

4.
周子成 《制冷》2014,(4):31-38
低GWP是选择替代制冷剂的一个重要特性,HFC-1234族具有低GWP的特性。因而适用于空调和制冷使用。本文介绍HFO-1234ze(E)以及它与HFC-32的混合物作为蒸气压缩式热泵和制冷系统的低GWP替代物制冷剂。  相似文献   

5.
介绍HFO类制冷剂R1234ze(E)与HFC类制冷剂R134a的基础特性,分别将这2种工质在螺杆式冷水机组上开展制冷循环性能试验,进行整机制冷量、降膜蒸发器传热性能、壳管式冷凝器传热性能及COP等方面的测试。试验结果表明:R1234ze(E)相比R134a样机制冷量有较大的衰减,蒸发和冷凝传热性能均有下降,而整机COP略有提升。指出后续需要针对R1234ze(E)性能衰减、传热能力下降等问题进行深入研究。  相似文献   

6.
在热泵热水器名义工况下,本文建立了热泵系统循环热力学模型,利用EES程序对混合工质R1234ze/HCs及对应的纯工质热泵系统循环性能进行了对比分析。结果表明:R1234ze/R600在质量分数(20/80)和R1234ze/R600a在质量分数(40/60)存在最优配比,对应的最大制热COP_h分别为3. 41和3. 32,而R1234ze/R290则呈现单调下降趋势。R1234ze/R600(20/80)系统的制热COP_h比R1234ze/R600a(40/60)、R1234ze、R290、R600、R600a系统分别高2. 7%、17%、0. 09%、16. 3%和17. 8%,排气温度为76. 9℃,冷凝压力为0. 711 MPa,压比为6. 32,有望成为新型替代工质。  相似文献   

7.
为寻求R134a合适的替代品,本文通过在螺杆冷水机组上进行实验的方法,对具有低GWP的新型HFOs工质R1234ze、R513A各方面性能进行了对比实验研究,实验结果表明:R513A单位容积制冷量与R134a相近,COP略有下降,而R1234ze制冷量衰减较大,COP略有提升,两种HFOs工质的压降、排气温度与R134a近似,充注量减少3%~6%。此外本文还对三种工质的传热系数K值进行了研究。  相似文献   

8.
HFO-1234ze在空气源热泵热水器中 替代R417A、R22的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张雷  王芳  王珂  刘艳  姜昆 《制冷学报》2014,(3):102-108
首先从热物性、ODP、GWP、工质毒性、可燃性方面对HFO-1234ze、R417A、R22三种制冷剂进行对比,并进行理论计算,初步分析HFO-1234ze制冷剂运用在空气源热泵热水器上的可行性。然后,在焓差法实验室内,对分别采用HFO-1234ze,R417A和R22作为制冷工质的空气源热泵热水器进行名义工况下的性能测试,对三种制冷剂的吸排气温度,吸排气压力,压缩机输入功率、制热量、性能系数进行对比分析。本文研究结果显示HFO-1234ze可以作为R417a与R22在热泵热水器中的替代制冷剂。此次研究为热泵热水器的工质选择提供参考。  相似文献   

9.
介绍R1234yf,R1234ze(E),R452B,R513A和R515A这5种典型HFO类工质的基础特性,分别针对水冷式和风冷式冷水机组的典型设计工况,开展上述5种工质与R134a,R410A和R22这3种传统工质的循环性能初步对比分析,结果表明:R1234ze(E)和R515A具有较高的COP和较低的排气温度,但单位容积制冷量偏低;R452B虽然具有较高的单位容积制冷量,但还须在系统方面进行深入优化以提升机组的整体能效。  相似文献   

10.
新型制冷剂R1234ze(E)(trans-1,3,3,3-tetrafluoropropene)因较低的GWP而被广泛关注,有望在热泵中作为R134a的替代品。本文对R1234ze(E)在内径为8 mm水平管内流动沸腾过程中摩擦压降特性进行实验研究,并在相同实验工况下与R134a进行对比。实验研究的流动沸腾换热的饱和温度为10℃,热流密度为5.0 k W/m~2和10.0 k W/m~2,质流密度范围为300~500 kg/(m~2·s),并分析质流密度、热流密度对R1234ze(E)和R134a饱和流动沸腾过程中摩擦压降的影响。结果表明,在相同工况下R1234ze(E)的流动沸腾过程的摩擦压降略大于R134a,如质流密度为500 kg/(m~2·s)时,R1234ze(E)的平均摩擦压降值比R134a大8.4%左右。最后,将实验结果同四种摩擦压降经验关联式进行比较分析。  相似文献   

11.
The EU Regulation No 517/2014 is going to phase-out most of the refrigerants commonly used in refrigeration and air conditioning systems (R134a, R404A and R410A) because of their extended use and their high GWP values. There are very different options to replace them; however, no refrigerant has yet imposed. In this paper we review and analyze the different mixtures proposed by the AHRI as alternative refrigerants to those employed currently. These mixtures are composed by HFC refrigerants: R32, R125, R152a and R134a; and HFO refrigerants: R1234yf and R1234ze(E). It is concluded, from the theoretical analysis, that most of the new HFO/HFC mixtures perform under the HFC analyzed (although some experimental studies show the contrary) and, in most cases, do not meet the GWP restrictions approved by the European normative. Furthermore, some of the mixtures proposed would have problems due to their flammability.  相似文献   

12.
R32/R1234ze(E) mixtures are potentially low-GWP alternative refrigerants for air conditioning and heat pumps while the rare pure refrigerants can totally meet the requirements of new international protocols on environmental conservation, thermodynamic performance, and safety. The system performance under different concentrations is important for selection of working concentration for the new R32/R1234ze(E) refrigeration or heat pump. In this paper, the thermodynamic model of an ASHP with R32/R1234ze(E) mixtures is built and used to investigate the influence of the refrigerant composition on the performance of the system. The results show that when the mass fraction of R1234ze(E) changes from 0% to 100%, the heating capacity of the ASHP decreases by 67.2%, while the COP continuously increases by 70.3%, which means the changing tendency of system COP is quite different from previous research under fixed evaporating and condensing temperature. Adjusting the refrigerant concentration will be a good system modulation method for ASHPs with R32/R1234ze(E) to meet both the heating capacity and energy efficiency requirements. Furthermore, temperature matching degree is an important factor that affects the energy efficiency of ASHPs with non-azeotropes, which can guide the circuitry optimization of evaporator and condenser in ASHPs with non-azeotropes.  相似文献   

13.
The environmental problems induced by the ongoing increase in the global worming potential (GWP) pose a significant interest among researchers. It was found that, the currently used refrigerants are with high GWP (National Refrigerants Inc., 2004), so that it becomes necessary to search for alternatives to these refrigerants that can properly operate on the same systems but with low GWP. Therefore a walk-in cold room working with vapor compression cycle is constructed and tested in this paper. The performance of R134a refrigerant with high GWP is compared to another low GWP refrigerant R1234ze in a trail to provide a solution of the problem of high GWP of refrigerants currently used in cold rooms. The results obtained in this study have shown that, the cooling capacity of R1234ze was lower than that of R134a by 2% to 13%. The lowest evaporating temperature that could be reached for R1234ze is −13 °C while the lowest temperature of R134a is −30 °C. Regarding the power consumption, R1234ze has lower power consumption than R134a by about 9% to 15% therefore it can be concluded that R 1234ze can be recommended to be used at high and medium evaporating temperature after carrying out the suitable modifications on the refrigeration cycle.  相似文献   

14.
Owing to the growing concerns about the relatively high global warming potential (GWP) of current refrigerants, a serious effort is in progress to find lower-GWP substitutes. The hydrofluoroolefin (HFO)-based refrigerants R1234yf and R1234ze(E) are being considered for use in multiple heating, ventilation, air conditioning, and refrigeration applications because of their very low GWP. A study was conducted to model a residential heat pump water heater using these HFOs. A system model was calibrated using experimental data and the calibrated model was used to evaluate the potential of HFOs to replace R134a. A series of parametric analyses were used to investigate the impacts of condenser wrap pattern, condenser tube size, evaporator size, and heat loss factor from the storage tank. It has been shown that both R1234yf and R1234ze(E) can be substituted for R134a with comparable performance and no substantial modifications to the original system. This study presents a detailed feasibility analysis for successful replacement of high-GWP refrigerants with low-GWP refrigerants with acceptable performance.  相似文献   

15.
R1234yf and R1234ze(E) have been proposed as alternatives for R134a in order to work with low GWP refrigerants, but this replacement results generally in a decrease of the performance. For this reason, it is interesting to explore ways to improve the system performance using these refrigerants. In this paper, a comparative study in terms of energy performance of different single stage vapour compression configurations using R1234yf and R1234ze(E) as working fluids has been carried out. The most efficient configuration is the one which uses an expander or an ejector as expansion device. On the other hand, using an internal heat exchanger in a cycle which replaces the expansion valve by an expander or an ejector could produce a detrimental effect on the COP. However, for all the configurations the introduction of an internal heat exchanger produces a significant increment on the cooling capacity.  相似文献   

16.
R1234ze(E), trans-1, 3, 3, 3-tetrafluoropropene, is a fluorinated propene isomer which may be a substitute of R134a for refrigeration applications. R1234ze(E) has a much lower GWP100-years than that of R134a. In this paper, the local heat transfer coefficient during condensation of R1234ze(E) is investigated in a single minichannel, horizontally arranged, with hydraulic diameter equal to 0.96 mm. Since the saturation temperature drop directly affects the heat transfer rate, the pressure drop during adiabatic two phase flow of R1234ze(E) is also measured. Predictive models are assessed both for condensation heat transfer and pressure drop. A comparative analysis is carried out among several fluids (R1234ze(E), R32, R134a and R1234yf) starting from experimental data collected at the same conditions and using the Performance Evaluation Criteria (PEC) named Penalty Factor (PF) and Total Temperature Penalization (TTP) to rank the tested refrigerants in forced convective condensation.  相似文献   

17.
Due to concerns about global warming, there is interest in 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) as potential replacements for refrigerants with high global warming potential (GWP). In this paper we survey available data and provide viscosity correlations that cover the entire fluid range including vapor, liquid, and supercritical regions. The correlation for R1234yf is valid from the triple point (220 K) to 410 K at pressures up to 30 MPa, and the correlation for R1234ze(E) is valid from the triple point (169 K) to 420 K at pressures up to 100 MPa. The estimated uncertainty for both correlations at a 95% confidence level is 2% for the liquid phase over the temperature range 243 K to 363 K at pressures to 30 MPa, and 3% for the gas phase at atmospheric pressure.  相似文献   

18.
In order to investigate the performance of R1234ze(E) and its blends with lubricating oil in refrigeration system, the miscibility should be well understood firstly. The critical miscibility temperature (TCMT) data of different mass fraction of R1234ze(E) and its blends (R600a, R32) with lubricating oils (a 3GS naphthenic mineral oil and polyol ester (POE) oil) were measured and analyzed at temperature ranging from 220.15 to 310.15 K in this paper. The miscibility data were correlated with a Modified Element Contribution Evaluation Method and an evaluation equation, which was proposed to predict the miscibility of the binary blends. It was concluded that R600a promoted the miscibility of R1234ze(E)/R600a with mineral oil while R1234ze(E) blocked it. For the mixed solution of R1234ze(E)/R32 with POE oil, the more R32 had the better miscibility shown, while the more R1234ze(E) was the worse miscibility performed.  相似文献   

19.
本文针对含HFOs类混合制冷剂黏度开展实验和模型研究。采用振动弦法黏度计对R32纯质和R32/R1234yf混合制冷剂黏度进行了实验测量,测量的温度范围分别为263~350 K、263~360 K,压力最高均为30 MPa,实验系统黏度测量的不确定度为2%。本文共获得了177组实验数据,利用得到的实验数据,基于硬球模型分别拟合了R32纯质和R32/R1234yf混合制冷剂黏度方程。R32纯质黏度实验数据与方程的平均绝对偏差为0.28%,最大绝对偏差为0.92%;R32/R1234yf混合工质黏度实验数据与方程的平均绝对偏差为0.69%,最大绝对偏差为2.09%。由此可见,实验数据和黏度模型吻合较好,为R32和R32/R1234yf混合制冷剂的应用研究提供了重要参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号