首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
YAl3(BO3)4:Tb3+ phosphors were fabricated by the sol–gel method. The phosphor showed prominent luminescence in green due to the magnetic dipole transition of 5D47F5. Structural characterization of the luminescent material was carried out with X-ray powder diffraction (XRD) analysis. Luminescence properties were analyzed by measuring the excitation and photoluminescence spectra. Photoluminescence measurements indicated that the phosphor exhibited bright green emission at about 541 nm under UV excitation. It is shown that the 11% of doping concentration of Tb3+ ions in YAl3(BO3)4:Tb3+ phosphors is optimum.  相似文献   

2.
The Eu3+ and Tb3+ ions activated SrWO4 phosphors have been synthesized by solid state method. The crystal structures and morphologies of the products are characterized by Powders X-ray Diffraction (XRD) and scanning electronic microscopy (SEM). The results indicated that both SrWO4:Eu3+ and SrWO4:Tb3+ phosphors belong to tetragonal phase, and the particles of the phosphors become aggregate with the increase of calcinations temperature. Analyzed by luminescent spectra, the dominant emission of Eu3+ in SrWO4, which is the typical hypersensitive transition 5D0 → 7F2 (613 nm), and the green emission (5D→ 7F5) intensity of Tb3+ in SrWO4:Tb3+ is also dominant. The reaction temperature had obvious influence on the luminescent properties. The intensity reached the strongest when it is sintered at 900 °C. Therefore, we can try to select the right temperature in order to obtain the ideal product.  相似文献   

3.
Novel green nanophosphors Ca2Gd2W3O14: Tb3+ were synthesized by solid state reaction method. From the X-ray diffraction profiles it is observed that Tb3+: Ca2Gd2W3O14 phosphors were crystallized in the form of tetragonal structure. The scanning electron microscopy (SEM) image shows that the particle size is at around 300 nm. In addition to these the prepared powder phosphors were also examined by the energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) and mechanoluminescence (ML) spectra. Emission spectra of Tb3+: Ca2Gd2W3O14 nanophosphors have shown bright green emission at 545 nm (5D4 → 7F5) with an excitation wavelength λexci = 374 nm (7F6 → 5G6). ML spectra shows the radiation effect on the Ca2Gd2W3O14: Tb3+ nanophosphors and from that it was observed that these phosphors are very less sensitive for lower exposure.  相似文献   

4.
This article presents the synthesis and photoluminescence (PL) properties of Y2Zr2O7:Tb3+. The Tb3+-doped Y2Zr2O7 zirconates were successfully synthesized by a hydrothermal process at 200 °C for 20 h. X-ray diffractometer (XRD) patterns revealed that all of the products were phase-pure with the fluorite structure. PL study showed that the Y2Zr2O7:Tb3+ phosphors exhibited obvious PL emission peaks which located at 490, 545, 585, and 623 nm; the dominant emission located at 545 nm is assigned to 5D4 → 7F5 transition. Furthermore, Tb3+-doping concentration strongly affected the PL properties, and the quenching concentration is 5 at.%.  相似文献   

5.
A new series of Eu3+ ions-activated calcium gadolinium tungstate [Ca2Gd2W3O14] phosphors were synthesized by conventional solid-state reaction method. The X-ray diffraction patterns of the powder samples indicate that the Eu3+: Ca2Gd2W3O14 phosphors are of tetragonal structure. The prepared phosphors were well characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL), and mechanoluminescence (ML) spectra. PL spectra of Eu3+: Ca2Gd2W3O14 powder phosphors have shown strong red emission at 615 nm (5D0 → 7F2) with an excitation wavelength λ exci = 392 nm (7F0 → 5L6). The energy transfer from tungstate groups to europium ions has also reported. Mechanoluminescence studies of Eu3+: Ca2Gd2W3O14 phosphors have also been explained systematically.  相似文献   

6.
LiEu1−x (W2−y Mo y )O8:xBi3+ series red-emitting phosphors were synthesized by solid state reaction. The structure, morphology, and photoluminescent properties of phosphors were studied by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectrum, respectively. X-ray powder diffraction analysis showed that the as-obtained phosphors belong to the scheelite structure. The average particle size of the investigated phosphor was about 8 μm. The excitation spectrum exhibits a charge-transfer broad band along with some sharp peaks from the typical 4f–4f transitions of Eu3+. Under excitation of UV, near-UV, or blue light, these phosphors showed strong red emission at 615 nm due to 5D07F2 transition of Eu3+. The incorporation of Mo6+ into LiEuW2O8:Bi3+ could induce red-shift of the charge-transfer broad band and a remarkable increase of photoluminescence. The highest red-emission intensity was observed with LiEu0.80Mo2O8:0.20Bi3+. Compared with the commercial red-emitting phosphor, Y2O2S:Eu3+, the emission intensity of LiEu0.80Mo2O8:0.20Bi3+ phosphor is much stronger than that of Y2O2S:Eu3+ and its chromaticity coordinates are closer to the standard values than that of the commercial phosphor. The optical properties of LiEu0.80Mo2O8:0.20Bi3+ phosphor make it attractive for the application in white-light-emitting diodes (LEDs), in particular for near-UV InGaN-based white-LEDs.  相似文献   

7.
Monodispersed spheres (1–4 μm in diameter) of BaWO4:Eu3+ (hereafter BWO:Eu) red-phosphor exhibiting intense emission at 615 nm were synthesized via a mild hydrothermal method. X-ray diffraction, scanning electron microscope, photoluminescence excitation and emission spectra, and decay curve were used to characterize the properties of BWO:Eu phosphors. An intense red emission was obtained by exciting either into the 5L6 state with 394 nm or the 5D2 state with 465 nm, that correspond to two popular emission lines from near-UV and blue LED chips, respectively. The values of Ω 2,4 experimental intensity parameters (13.8 × 10−20 and 8.2 × 10−20 cm2) are determined. The high-emission quantum efficiency of the BWO:Eu phosphor suggests this material could be promising red phosphors for generating white light in phosphor-converted white light-emitting diodes.  相似文献   

8.
A series of Tb3+ doped CeF3 and NaCeF4 nanoparticles with different morphology and dimension were synthesized via hydrothermal method. Different organic additives, including sodium dodecyl sulfonate (SDS), polyvinylpyrrolidone (PVP), cetyltrimethyl ammonium bromide (CTAB), oleic acid (OA), polyethylene glycol (PEG), trisodium citrate (Cit) were introduced to control the crystallite size and morphology. Powder X-ray diffraction (PXRD), fourier transform infra-red spectra (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and down-conversion (DC) photoluminescence spectra were used to characterize the samples. The emission peaks of all the prepared samples centered at 490, 545, 585 and 621 nm which can be ascribed to the 5D47FJ (J?=?6, 5, 4, 3) transitions respectively of Tb3+ ion. However, emission intensities are strongly controlled by morphology and particle sizes which are influenced by different organic additives used in synthesis. Moreover, the crystal growth process was monitored through a series of time-dependent experiments and a possible formation mechanism has been proposed.  相似文献   

9.
Emission spectral results of Pr3+ & Ho3+ ions doped Ca4GdO(BO3)3 powder phosphors are reported here. XRD, SEM and FTIR measurements have been carried out for them. The emission spectrum of Pr3+: Ca4GdO(BO3)3 has shown an emission transition 1D23H4 at 606 nm with λexci = 480 nm (3H43P0) and Ho3+: Ca4GdO(BO3)3 phosphor has shown an emission transition 5S25I8 at 549 nm with λexci = 447 nm (5I85F1). Emission performances of these two phosphors have been explained in terms of energy level diagrams.  相似文献   

10.
Well-crystallized flower-like SrCO3:Tb3+ phosphors have been synthesized by an inexpensive and friendly solvothermal process using polyvinylpyrrolidone (PVP, K30) as an additive without further annealing treatment. X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and field emission scanning electron microscopy (FESEM) as well as photoluminescence spectroscopy (PL) were used to characterize the resulting samples. The amount of PVP and the reaction time have strong effect on the morphology of the SrCO3:Tb3+ particles. The results of XRD confirm the formation of a well-crystallized SrCO3 phase with an orthorhombic structure. The possible formation mechanism for flower-like SrCO3:Tb3+ phosphor is proposed. The SrCO3:Tb3+ phosphors show the characteristic 5D47FJ (J = 6, 5, 4, 3) emission lines with green emission 5D47F5 (544 nm) as the most prominent group under ultraviolet excitation.  相似文献   

11.
Synthesis, X-ray diffraction, and photoluminescence (PL) investigations of SrZnO2 doped with Eu3+ were carried out in order to characterize the material. The emission spectra showed a broad band emission at 525 nm attributed to oxygen defect centers in the host matrix, along with peaks corresponding to the 5D0 → 7F j (j = 1, 2) transitions of Eu ion under 250 nm excitation. PL decay time studies were done to confirm these investigations. Time-resolved emission spectrometric (TRES) study was carried out to extract the emission spectra of the Eu ion which was buried under the broad band emission. After giving suitable delay times and by choosing a proper time gate, transitions due to 5D0 → 7F j (j = 0, 1, 2, 3, and 4) could be observed. Judd–Ofelt intensity parameters and other radiative properties for the system were evaluated from this emission spectrum and decay time data by adopting standard procedure. The color coordinates of the system were also evaluated and plotted on a standard CIE index diagram. The observations showed that the SrZnO2:Eu3+material has near white light emission (also considering the emission from host) whereas, the extracted emission spectrum due to only Eu ions has a near red emission.  相似文献   

12.
In this work, Gd(P0.5V0.5)O4: x at.% Eu3+ phosphors with different dopant concentrations (x?=?1, 3, 5, 6, 7, 9) were synthesized through chemical coprecipitation method. The phosphors were characterized by XRD, SEM, infrared spectroscopy, photoluminescence excitation, emission spectra and CIE. The results of XRD indicate that the obtained phosphors have the tetragonal phase structure. Eu3+ emission transitions arise mainly from the 5D0 level to the 7FJ (J?=?0, 1, 2, 3, 4) manifolds. The emission intensity and crystalline of Gd(P0.5V0.5)O4:x at% Eu3+ powders are increasing with annealing temperature at 600, 800, 1000, 1100, and 1200 °C, respectively. The introduction of VO43? can broaden the range of UV excitation spectrum wavelength and enhance the transition between 5D0 → 7F1 to 5D0 → 7F2 for long wavelength emission. And the most dominant emission peak of Eu3+ for 5D0 → 7F2 transition is closer to pure red light at 622 nm. The maximum emission intensity of the phosphors is the concentration of 6 at.% Eu3+ because of the distance of the neighbor Eu3+ ions reaching a certain critical value and the influence of multipolar interaction. Compared to commercial phosphors Y2O3:Eu3+ and (Y,Gd)BO3:Eu3+, our work yielded a longer wavelength red light emission intensity and a higher proportion of red light to orange light. All our results indicate that color purity of this phosphor turns it into a promising red phosphor in ultraviolet-pumped light-emitting diodes.  相似文献   

13.
This paper examines the effect of doping level on the X-ray luminescence of TbO2-doped polycrystalline lithium tetraborate. It is shown that, when interpreting such spectra, it is convenient to proceed from the terms of free activator and constituent ions. We demonstrate that the emission lines of Tb3+ in doped polycrystalline lithium tetraborate are effectively excited in the band between 350 and 650 nm, which is predominantly due to electron transitions from the 5 D 3 and 5 D 4 excited states to spin-orbital levels of the 7 F J ground multiplet. The emission lines of lithium and boron in single-crystal and polycrystalline undoped lithium tetraborate are effectively excited in the band between 274 and 550 nm.  相似文献   

14.
New red emitting phosphors, Ca3(VO4)2:Eu3+,Bi3+, Ca3((P,V)O4)2:Eu3+ were synthesized by low temperature solid-state reaction and characterized by X-ray diffraction, scanning electron microscopy, photoluminescence spectra and Fourier transform infrared spectroscopy. The results show that the red emission located at about 613 nm was ascribed to 5 D 0-7 F 2 transition of Eu3+. The effect of by Bi doping and by P doping was also investigated systematically.  相似文献   

15.
Phase pure Ce3+ and Tb3+ singly doped and Ce3+/Tb3+ co-doped Ba3GdNa(PO4)3F samples have been synthesized via the high temperature solid-state reaction. The crystal structures, photoluminescence properties, fluorescence lifetimes, thermal properties and energy transfer of Ba3GdNa(PO4)3F:Ce3+,Tb3+ were systematically investigated. Rietveld structure refinement indicates that Ba3GdNa(PO4)3F crystallizes in a hexagonal crystal system with the space group P-6. For the co-doped Ba3GdNa(PO4)3F:Ce3+,Tb3+ samples, the emission color can be tuned from blue to green by varying the doping concentration of the Tb3+ ions. The intense green emission was realized in the Ba3GdNa(PO4)3F:Ce3+,Tb3+ phosphors on the basis of the highly efficient energy transfer from Ce3+ to Tb3+. Also the energy transfer mechanism has been confirmed to be quadrupole–quadrupole interaction, which can be validated via the agreement of critical distances obtained from the concentration quenching (13.84 Å). These results show that the developed phosphors may possess potential applications in near-ultraviolet pumped white light-emitting diodes.  相似文献   

16.
We have prepared europium-doped BaO-Bi2O3-B2O3 glasses and investigated the doping effect on the main physicochemical properties and local structure of the glasses. Using Judd-Ofelt analysis, we calculated intensity parameters (Ω2, Ω4, and Ω6), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross sections for 5 D 07 F J transitions.  相似文献   

17.
Ba2LaV3O11:Eu3+ phosphors were firstly synthesized by the traditional solid-state reaction method at 1100 °C. Their luminescence properties were investigated by photoluminescence excitation and emission spectra. The excitation spectrum shows a broad band centered at about 275 nm in the region from 200 to 370 nm, which is attributed to an overlap of the charge transfer transitions of O2??→?V5+ and O2??→?Eu3+. The phosphors exhibit the red emissions of Eu3+ and the emission intensity ratio of 5D0?→?7F2 to 5D0?→?7F1 is dependent on the Eu3+ concentration due to an environment change about Eu3+ ions. Concentration quenching occurs at 30 mol% in the phosphors and exchange interaction is its main mechanism. Ba2LaV3O11:Eu3+ displays tunable CIE color coordinates from yellow orange to red depended on Eu3+ content, which may have a potential application for illuminating and display devices.  相似文献   

18.
A series of polycrystalline Na4Ca4(Si6O18):Eu3+ orange emitting phosphors were synthesized by a conventional high-temperature solid-state reaction. The phase formation was confirmed by X-ray power diffraction analysis. The excitation spectra show a strong host absorption indicating an efficient energy transfer process from O2? to Eu3+ ions. Upon NUV radiation, the phosphors showed strong red emission around 610 nm (5D0 → 7F2) and orange emission around 591 nm (5D0 → 7F1), but the 5D1,2,3 emission nearly can not be seen. Compared with the luminescence properties of Li+, Na+, and K+ co-doped samples, we deduced that Na+ ions probably prefer to dope into the intrinsic Na vacancies rather than Ca2+ ions vacancies in Na4Ca4(Si6O18) crystal. Thermal stability properties, quantum efficiency and chromaticity coordinates of the phosphors have been investigated for the potential application in white LEDs.  相似文献   

19.
Eu3+ activated CaSiO3, (Ca, Ba) SiO3 and (Ca, Sr) SiO3 have been prepared by sol-gel technique. Residual solvent and organic contents in the gel were removed by firing at 100°C for 3–4 h at 300 and 600°C for 2 h. Small exothermic shoulder around 850 to 875°C, as observed in DTA curve, corresponds to crystallization temperature of the doped calcium silicate. Influence of firing temperature on the luminescence of Eu3+ shows the maximum emission intensity in gel fired at 850°C. Photoluminescence emission peak is observed at 614 nm due to5D07F2 transition of Eu3+ ion in (Ca, Ba) SiO3 and (Ca, Sr) SiO3 phosphors, when excited by 254 nm. The (Ca, Ba) SiO3 material is proposed as an efficient red phosphor.  相似文献   

20.
Blue emitting CaWO4 and greenish blue emitting ZnWO4 nanoparticles are synthesized via microemulsion techniques applying a cationic (CTAB) as well as a non-ionic surfactant (TritonX-100). The influence of the surfactant on particle size and shape is studied. Scanning electron microscopy and dynamic light scattering confirm the presence of uniform and non-agglomerated nanoparticles, 60–80 nm in diameter. Photoluminescence confirms [WO4]2−-related broad-band emission with its maximum at 440 nm (CaWO4) and 420 nm (ZnWO4). The highest quantum yield (QY) is observed for nanoscaled CaWO4 with a value of 23–25%. Doping of CaWO4 and ZnWO4 with Tb3+ and Eu3+ was performed and in the case of CaWO4:Tb and CaWO4:Eu and results in the emission of green and red light, again with comparably high QYs (17–19%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号