首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of triethylammonium bicarbonate (TEAB) solution in electrospray mass spectrometry proved to be a very efficient way for studying proteins or noncovalent protein complexes under "nondenaturing" conditions. The low charge states observed in the mass spectra improve the separation of ions arising from macromolecular species of close masses. Moreover, the multiply charged ions generated in a TEAB solution are significantly more stable than those formed under more conventional conditions (for example, with ammonium bicarbonate or acetate solution). The analytical interest of TEAB for the analysis of macromolecular species that can easily dissociate in the gas phase, such as hemoglobin or other macromolecular noncovalent complexes, is demonstrated.  相似文献   

2.
The behavior of macromolecular systems at different temperatures is often crucial to their biological activity and function. While heat-induced changes of individual proteins are readily monitored by a number of spectroscopic methods, changes in noncovalent complexes of biomolecules are more challenging to interpret. Nanoelectrospray mass spectrometry is becoming increasingly powerful in the study of large noncovalent complexes, and here we describe the design, characterization, and application of a novel probe that allows the thermocontrol of the solution in the electrospray capillary. The transition temperature for the unfolding of the protein lysozyme is readily obtained and correlates closely with that measured by fluorescence spectroscopy, thereby demonstrating the validity of this approach. We apply this technique to the study of the 200-kDa complex of the small heat shock protein TaHSP16.9, revealing both its dissociation into suboligomeric species and an increase in its size and polydispersity at elevated temperatures. In contrast, gas-phase activation of this complex is also carried out and yields a dissociation pathway fundamentally different from that observed for thermal activation in solution. As such, this probe allows the study of the reversible heat-induced changes of noncovalent complexes in a biologically relevant manner.  相似文献   

3.
We present a rapid and quantitative method to physically characterize the structure and stability of viruses. Electrospray differential mobility analysis (ES-DMA) is used to determine the size of capsomers (i.e., hexons) and complete capsids. We demonstrate how to convert the measured mobility size into the icosahedral dimensions of a virus, which for PR772 become 68.4 nm for vertex-to-vertex, 54.4 nm for facet-to-facet, and 58.2 nm for edge-to-edge lengths, in reasonable agreement with dimensions from transmission electron microscopy for other members of the family Tectiviridae (e.g., PRD1). These results indicate ES-DMA's mobility diameter most closely approximates the edge-to-edge length. Using PR772's edge length (36.0 nm) and the size of the major capsid hexon (≈8.4 nm) from ES-DMA with icosahedral geometry, PR772's T = 25 symmetry is confirmed and the number of proteins in the capsid shell is determined. We also demonstrate the use of ES-DMA to monitor the temporal disintegration of PR772, the thermal degradation of PP7, and the appearance of degradation products, essential to viral stability assays. These results lay groundwork essential for the use of ES-DMA for a variety of applications including monitoring of vaccine and gene therapy vector products, confirmation of viral inactivation, and theoretical studies of self-assembling macromolecular structures.  相似文献   

4.
5.
The overall structure of a protein-protein complex reflects an intricate arrangement of noncovalent interactions. Whereas intramolecular interactions confer secondary and tertiary structure to individual subunits, intermolecular interactions lead to quaternary structure--the ordered aggregation of separate polypeptide chains into multisubunit assemblies. The specific ensemble of noncovalent contacts dictates the stability of subunit folds, enforces protein-protein binding specificity, and determines multimer stability. Consequently, noncovalent architecture is likely to play a role in the gas-phase dissociation of these assemblies during tandem mass spectrometry (MS/MS). To further advance the applicability of MS/MS to analytical problems in structural biology, a better understanding of the interplay between the structures and fragmentation behaviors of noncovalent protein complexes is essential. The present work constitutes a systematic study of model protein homodimers (bacteriophage N15 Cro, bacteriophage λ Cro, and bacteriophage P22 Arc) with related but divergent structures, both in terms of subunit folds and protein-protein interfaces. Because each of these dimers has a well-characterized structure (solution and/or crystal structure), specific noncovalent features could be correlated with gas-phase disassembly patterns as studied by collision-induced dissociation, surface-induced dissociation, and ion mobility. Of the several respects in which the dimers differed in structure, the presence or absence of intermolecular electrostatic contacts exerted the most significant influence on the gas-phase dissociation behavior. This is attributed to the well-known enhancement of ionic interactions in the absence of bulk solvent. Because salt bridges are general contributors to both intermolecular and intramolecular stability in protein complexes, these observations are broadly applicable to aid in the interpretation or prediction of dissociation spectra for noncovalent protein assemblies.  相似文献   

6.
Nanoflow electrospray mass spectrometry has been applied previously to investigate noncovalent protein-protein and protein-ligand interactions. Here we evaluate a commercial microchip device for this application. We show that the microchip can be used to obtain mass spectra of the noncovalent tetramer transthyretin. The device showed a 10-fold increase in signal stability compared with a nanoflow capillary and a high level of nozzle-to-nozzle reproducibility. Binding of the natural ligand thyroxine was clearly observed, and a range of small molecules proposed as inhibitors of transthyretin amyloidosis were shown to be effective in stabilizing the tetramer. We propose that measuring the ability of small molecules to stabilize protein complexes using this automated microchip technology will enable high-throughput screening of multi-protein complexes by mass spectrometry.  相似文献   

7.
A solution-phase screening method for libraries of pharmaceutically relevant molecules is presented. The technique is applicable to screening combinatorial libraries of 20-30 closely related molecules. In this report, individual benzodiazepines are selected from a multicomponent library mixture by formation in solution of noncovalent immunoaffinity complexes with antibodies raised to therapeutically proven drugs such as nitrazepam, temazepam, or oxazepam. Captured compounds are separated from nonspecifically bound library components by centrifugal ultrafiltration. The specifically selected molecules retained on the filter are subsequently liberated from the antibodies by acidification and analyzed by HPLC coupled with pneumatically assisted electrospray (ion spray) ionization mass spectrometric detection. Competition by the benzodiazepines for limited antibody binding sites is controlled by varying the stoichiometry of the complexation mixture. This procedure selects library components with the greatest affinity for a particular antibody. Specific capture of benzodiazepines is demonstrated by screening both a pool of structurally similar benzodiazepines and a more complex mixture of benzodiazepines with an additional set of unrelated compounds. Affinity ultrafiltration and electrospray mass spectrometry complement each other to enhance screening and identification of pooled drug candidates and potentially can be extended to other small-molecule combinatorial libraries and macromolecular receptor preparations.  相似文献   

8.
Depending on the spraying conditions and fluid properties, a variety of electrospray regimes exists. Here we explore the changes in ion production that accompany the transitions among the three axial spraying modes, the burst mode, the pulsating Taylor cone mode, and the cone-jet mode. Spray current oscillation and phase Doppler anemometry measurements, fast imaging of the electrified meniscus, and mass spectrometry are utilized to study the formation, size, velocity, and chemical composition of droplets produced in the three modes. High-speed images indicate that the primary droplets are produced by varicose waves and lateral kink instabilities on the liquid jet emerging from the Taylor cone, whereas secondary droplets are formed by fission. Dramatic changes in the droplet size distributions result from the various production and breakup mechanisms observed at different emitter voltages and liquid flow rates. We demonstrate that droplet fission can be facilitated by space charge effects along the liquid jet and in the plume. Compared to the other two regimes, a significantly enhanced signal-to-noise ratio, a lower degree of analyte oxidation, and milder fragmentation are observed for the cone-jet mode.  相似文献   

9.
Han X  Ren KF  Wu Z  Corbin F  Gouesbet G  Gréhan G 《Applied optics》1998,37(36):8498-8503
The development of initial disturbances is relevant to the understanding of atomization processes in which droplets are generated by the breakup of a liquid jet. We theoretically and experimentally demonstrate that such disturbances can be characterized by rainbow sizing. More specifically, for a liquid jet with a diameter of 600 mum, disturbances in the range from 10 nm to 0.2 mum are accessible.  相似文献   

10.
The application of a novel method for the identification of low-molecular-weight noncovalent ligands to a macromolecular target is reported. This technique is based on the measurement of analyte diffusion coefficients by electrospray mass spectrometry (ESI-MS) (Clark et al., Rapid Commun. Mass Spectrom. 2002, 16, 1454-1462). Potential ligands have large diffusion coefficients as long as they are free in solution. Binding to a macromolecular target, however, drastically reduces the diffusional mobility of any ligand species. Mixtures containing six different saccharides [ribose, rhamnose, glucose, maltose, maltotriose, and N,N',N'-triacetylchitotriose (NAG(3))] were screened for noncovalent binding to lysozyme. Of these six compounds, only NAG(3) is known to bind to the protein. In "direct" binding tests, NAG(3) shows a significantly reduced diffusion coefficient in the presence of the protein. No changes were observed for any of the other saccharides. In a second set of experiments, the use of a "competition" screening method was explored in which mixtures of candidate saccharides were tested for their ability to displace a reference ligand from the target. The addition of NAG(3)-containing mixtures significantly increased the diffusion coefficient of the reference ligand NAG(4) (N,N',N',N'-tetraacetylchitotetrose), whereas mixtures that did not contain NAG(3) had no effect. These data clearly indicate the potential of ESI-MS-based diffusion measurements as a novel tool to screen compound libraries for binding to proteins and other macromolecular targets. In contrast to conventional ESI-MS-based ligand-receptor binding studies, this method does not rely on the preservation of noncovalent interactions in the gas phase.  相似文献   

11.
Bacteriophage capsids have a protein shell with a symmetrical, fullerene-like arrangement of subunits. In the case of double-stranded DNA bacteriophages, the capsid joins with accessory proteins to form a DNA packaging motor that packages a genome in a cavity of the capsid. The motor cleaves ATP to obtain the needed energy. Light microscopy of single bacteriophages and single bacteriophage DNA packaging intermediates is being developed for the following reasons: (1) A synchronization-independent, fractionation-independent procedure is needed for the in vitro analysis of bacteriophage DNA packaging motors. (2) A non-biological procedure is needed for identifying and characterizing new bacteriophages needed for studies of bacteriophage gene homologies. In a recent study, light microscopy-based nanometry is used to follow the in vitro packaging of DNA in real time. Fluorescence microscopy of stained DNA is similarly used. Towards a more thorough analysis by fluorescence microscopy, single bacteriophage capsids are visualized by the unenhanced fluorescence of covalently bound protein-specific dyes. Dimerization of capsids is observed in real time. The dimerizing capsids had been restricted to a thin planar zone so that single-particle tracking was performed before, during, and after dimerization. Photobleaching is not a major problem. Thermal motion-based procedures are used for distinguishing binding from accidental co-migration. The long-range objective is the simultaneous real time monitoring of multiple state variables during cycling of a single DNA packaging motor. The results of these basic studies are applicable to both nanotechnological drug delivery and biological therapy.  相似文献   

12.
Time-of-flight (TOF) spectrometry utilizing scattered light detection of particles passing discrete detection locations in an accelerating gas jet is used for rapid measurement of highly-resolved size distributions of dry powder, gas- or liquid-borne particles having diameter > 300 nm. Extension of the measurement range of this technique to include nanoparticles (< 100 nm diameter) is investigated using a theoretical model to predict the reduction in minimum, scattered-light-detectable, particle size, a limit which restricts present TOF instruments to particles above 300 nm diameter. A single set of preliminary measured data are compared with the theoretical-model predictions. Together, these results indicate that a TOF spectrometer can provide rapid, highly-resolved particle size distribution measurement of nanoparticle powders and suspensions down to ≈ 50 nm diameter.  相似文献   

13.
Contemporary lipidomics protocols are dependent on conventional tandem mass spectrometry for lipid identification. This approach is extremely powerful for determining lipid class and identifying the number of carbons and the degree of unsaturation of any acyl-chain substituents. Such analyses are however, blind to isomeric variants arising from different carbon-carbon bonding motifs within these chains including double bond position, chain branching, and cyclic structures. This limitation arises from the fact that conventional, low energy collision-induced dissociation of even-electron lipid ions does not give rise to product ions from intrachain fragmentation of the fatty acyl moieties. To overcome this limitation, we have applied radical-directed dissociation (RDD) to the study of lipids for the first time. In this approach, bifunctional molecules that contain a photocaged radical initiator and a lipid-adducting group, such as 4-iodoaniline and 4-iodobenzoic acid, are used to form noncovalent complexes (i.e., adduct ions) with a lipid during electrospray ionization. Laser irradiation of these complexes at UV wavelengths (266 nm) cleaves the carbon-iodine bond to liberate a highly reactive phenyl radical. Subsequent activation of the nascent radical ions results in RDD with significant intrachain fragmentation of acyl moieties. This approach provides diagnostic fragments that are associated with the double bond position and the positions of chain-branching in glycerophospholipids, sphingomyelins and triacylglycerols and thus can be used to differentiate isomeric lipids differing only in such motifs. RDD is demonstrated for well-defined lipid standards and also reveals lipid structural diversity in olive oil and human very-low density lipoprotein.  相似文献   

14.
Attachment of a nonaggregating monoclonal antibody and of a soluble recombinant receptor molecule to the icosahedral nonenveloped human rhinovirus serotype 2 was studied with a nanoelectrospray ionization gas-phase electrophoretic molecular mobility analyzer (nESI-GEMMA). The virus mass, as determined via nESI-GEMMA, was within instrument accuracy (+/-6%) close to the theoretical value (8 x 10(6) Da) calculated from the sum of all constituents of one virus particle (60 copies of each of the four viral capsid proteins, the RNA genome, and one copy of the RNA-linked protein VpG). The formation of virus-antibody complexes of different stoichiometries (up to a mass 12.5 x 10(6) Da corresponding to 30 attached antibodies) and virus-receptor complexes (up to a mass 8.8 x 10(6) Da corresponding to 12 attached receptor molecules) was monitored. Via the volume derived from the electrophoretic mobility diameter (EMD), the stoichiometry of the HRV complexes was calculated. The accuracy of the EMD was within +/-0.5 nm, which corresponds to an accuracy of +/-4 antibodies and +/-5 receptor molecules in the respective complexes. For the first time, we here demonstrate the use of nESI-GEMMA for the analysis of the size and stoichiometry of biomolecules in high-order complexes in real time under normal pressure conditions.  相似文献   

15.
Transferring noncovalently bound complexes from the condensed phase into the gas phase represents a challenging task due to weak intermolecular bonds that have to be maintained during the phase transition. Currently, electrospray ionization (ESI) is the standard mass spectrometric (MS) technique to analyze noncovalent complexes. Although infrared matrix-assisted laser desorption ionization (IR-MALDI)-MS also provides particular soft desorption/ionization conditions, this method has so far hardly been applied for the analysis of noncovalent complexes. In this study, we employed IR-MALDI orthogonal time-of-flight (o-TOF)-MS in combination with the liquid matrix glycerol to characterize the specific complex formation of chito-oligosaccharide (CHOS) ligands with two variants of Chitinase A (ChiA) from Serratia marcescens, the inactive E315Q mutant and the active W167A mutant, respectively. The IR-MALDI-o-TOF-MS results were compared to those obtained using nano-ESI-quadrupole (q)-TOF-MS and ultraviolet (UV)-MALDI-o-TOF-MS. Using IR-MALDI-o-TOF-MS, specific noncovalent complexes between ChiA and CHOS were detected with distributions between enzymes with bound oligosaccharides vs free enzymes that were essentially identical to those obtained by nano-ESI-q-TOF-MS. Chitinase-CHOS complexes were not detected when UV-MALDI was employed for desorption/ionization. The results show that IR-MALDI-MS can be a valuable tool for fast and simple screening of noncovalent enzyme-ligand interactions.  相似文献   

16.
The breakup by supersonic air jet of cylindrical brittle gypsum deposits formed on tube surfaces was studied using high-speed imaging. The breakup of symmetric deposits was visualized from the front and back simultaneously, and the effects of deposit asymmetry, jet/deposit attack angle, and jet duration and frequency, were investigated. Three jet types were considered: short and long duration single pulses, and a pulsating jet. For each experiment, the time to breakup, the breakup duration, and the breakup length were measured. Results indicate that the breakup of asymmetric deposits depends on orientation, and that attack angle affects the probability of breakup and breakup length. Results also indicate that soft deposits can be broken by any jet type, while harder deposits, especially those farther from the nozzle exit, require a longer exposure time to be broken. Pulsating jets do not improve breakup effectiveness. This work has relevance to cleaning of fireside deposits formed on heat exchanger tubes in boilers.  相似文献   

17.
A new method for determination of dissociation constants (Kd) using on-line titration by electrospray ionization mass spectrometry is presented. Unlike in common titration experiments, where a set of discrete solutions with a fixed concentration of host and increasing concentration of guest is measured, here a continuous Gaussian concentration profile of guest, formed by band-broadening dispersion during passage through a long tubing, is utilized. An equation allowing access to dissociation constant values from experimental data fit to a 1:1 binding model was derived and incorporated into an in-house-written computer program for automated data processing. The new method is demonstrated for noncovalent complexes of cinchona alkaloid carbamate chiral selectors with N-dinitrobenzoylleucine enantiomers and a series of cyclodextrins with sulfonated azo dyes.  相似文献   

18.
A protocol based on aminated diamond nanocrystals has been developed to isolate, concentrate, purify, and digest DNA oligonucleotides in one microcentrifuge tube for matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry. It is shown that use of diamond nanocrystals as a solid-phase extraction support not only permits concentration of oligonucleotides in highly diluted solutions but also facilitates separation of oligonucleotides from proteins in heavily contaminated solutions. Enzymatic digestions can be conducted on particle, and additionally, the digests can be easily recovered from the solution for base sequencing. In this method, the aminated diamond nanocrystals ( approximately 100 nm in diameter) were prepared by noncovalent coating of carboxylated/oxidized diamonds with poly(L-lysines) (PL), which form stable complexes with DNA oligonucleotides. While the complexes are sufficiently stable to sustain repeated washing with deionized water, the DNA molecules can be readily eluted after incubation of the diamond adducts in aqueous ammonium hydroxide at elevated temperatures. No preseparation of PL or diamond nanocrystals is required for subsequent MALDI-TOF mass analysis.  相似文献   

19.
A liquid jet may be curved due to the influence of wind or gravity but more commonly, as is the case in industrial prilling, due to the rotation of the container from which it emerges. In prilling, pellets are manufactured by utilising the breakup of a curved liquid jet, and liquids commonly used in prilling are non-Newtonian. In this paper we investigate the influence of rotation, surface tension and viscosity on the breakup of a spiralling slender power-law liquid jet with applications to industrial prilling. The non-linear evolution equations for the jet radius and axial velocity are solved numerically using the method of finite differences. Numerical simulations allow us to explore the effects of changing the amplitude (or alternatively the frequency) of initial disturbances on breakup lengths and the size of main and satellite droplets.  相似文献   

20.
Separation and mass spectrometric analysis of intact noncovalent protein-protein complexes from mixtures is described. Protein complexes were separated using isoelectric focusing in a capillary under native conditions. During the mobilization, molecular masses of the intact complexes were measured on-line (as they emerged from the capillary) using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. An FTICR "in-trap" ion cleanup procedure was necessary for some complexes to reduce high levels of adduction and to obtain accurate molecular mass measurements. Optimization of the conditions for analysis of different intact complexes is discussed. We have shown that either the intact noncovalent complexes or their constituent protein subunits can be detected by variation of sheath liquid (i.e., NH4OAc vs HOAc) added at the electrospray-mass spectrometer interface. Thus, two successive experiments permit a fast and efficient characterization of intact complex stoichiometry, the individual complex subunits and the possible presence of metal or other adducted species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号