首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
MS Binding Assays are a label‐free alternative to radioligand binding assays. They provide basically the same capabilities as the latter, but an unlabeled reporter ligand is used instead of a radioligand. The study presented herein describes the development of MS Binding Assays that address D1 and D5 dopamine receptors. A highly sensitive, rapid and robust LC–ESI‐MS/MS quantification method for the selective D1 dopamine receptor antagonist SCH23390 ((5R)‐8‐chloro‐3‐methyl‐5‐phenyl‐1,2,4,5‐tetrahydro‐3‐benzazepin‐7‐ol) was established and validated, using its 8‐bromo analogue SKF83566 as an internal standard. This quantification method proved to be suitable for the characterization of SCH23390 binding to human D1 and D5 receptors. Following the concept of MS Binding Assays, saturation experiments for D1 and D5 receptors were performed, as well as competition experiments for D1 receptors. The results obtained are in good agreement with results from radioligand binding assays and therefore indicate that the established MS Binding Assays addressing D1 and D5 receptors are well‐suited substitutes for radioligand binding assays, the technique that has so far dominated affinity determinations toward these targets.  相似文献   

2.
Hess M  Höfner G  Wanner KT 《ChemMedChem》2011,6(10):1900-1908
A recently established and validated LC-ESI-MS/MS method for quantification of fluoxetine was used to implement MS binding assays for the human serotonin transporter (hSERT)-the primary target in the treatment of depression and emotional disorders. As a label-free screening technique, MS binding assays offer the opportunity to perform kinetic, saturation and competition assays using both (S)- and (R)-fluoxetine as native markers. In kinetic experiments, an association rate constant (k(+1) of 0.92±0.17×10(6) M(-1) s(-1) and a dissociation rate constant (k(-1)) of 0.0032±0.0002 s(-1) for (S)-fluoxetine binding to hSERT were determined. Saturation experiments provided K(d) values of 4.4±0.4 nM and 5.2±0.9 nM for (S)- and (R)-fluoxetine, respectively; statistical analysis revealed that the two enantiomers are equipotent. In competitive experiments with (S)-fluoxetine as a marker, K(i) values were obtained for various known inhibitors with a broad range of affinities for hSERT that correlate well with literature data obtained from radioligand binding experiments with [(3)H]imipramine. Additional competitive experiments using (R)-fluoxetine as a marker led to K(i) values for SERT inhibitors that deviate only marginally from those determined using the (S)-enantiomer. No changes in the rank order of affinities occurred, indicating that there is no difference in the binding characteristics of the two enantiomers.  相似文献   

3.
A new kind of binding assay is described in which the amount of a nonlabeled marker bound to the target is quantified by LC-ESI-MS-MS. This new approach was successfully implemented with nonlabeled NO 711 as marker and the GABA transporter subtype mGAT1 as target. The native marker bound to the target was liberated from the receptor protein by methanol denaturation after filtration. A reliable and sensitive LC-ESI-MS-MS method for the quantitation of NO 711 was developed, and data from mass spectrometric detection were analyzed by nonlinear regression. Kinetic MS-binding experiments yielded values for k+1 and k-1, while in saturation MS-binding experiments, Kd and Bmax values were determined. In competitive MS-binding experiments, Ki values were obtained for various test compounds covering a broad range of affinities for mGAT1. All experiments were performed in 96-well plate format with a filter plate for the separation step which improved the efficiency and throughput of the procedure. The method was validated by classical radioligand-binding experiments with the labeled marker [3H2]NO 711 in parallel. The results obtained from MS-binding experiments were found to be in good agreement with the results of the radioligand-binding assays. The new kind of MS-binding assay presented herein is further adapted to the conventional radioligand-binding assay in that the amount of bound marker is securely quantified. This promises easy implementation in accordance with conventional binding assays without the major drawbacks that are inherent in radioligand or fluorescence binding assays. Therefore, MS-binding assays are a true alternative to classical radioligand-binding assays.  相似文献   

4.
A novel type of MS binding assay, a substitute for radioligand binding, in which the quantification of the MS marker is performed by MALDI‐MS–MS (FlashQuant) has been established. Because conventional MS binding assays can only be carried out by LC–ESI‐MS–MS, the use of the FlashQuant system substantially increases the throughput capacity of this method. The study was performed for mGAT1 as a model system. First, a method was developed to quantify NO 711 as a marker for mGAT1 in a range from 208 pM to 16.7 nM using [2H10]NO 711 as an internal standard. On this basis, MS binding assays for mGAT1 could be implemented. Affinity constants determined in both saturation and competition experiments were in excellent agreement with those obtained in MS binding assays based on LC–ESI‐MS–MS quantification. As the MALDI‐MS system takes only a few seconds for quantification per sample, and the whole assay procedure is executed in a 96‐well format, this technique is amenable to high‐throughput screening.  相似文献   

5.
In this work, we present label‐free, mass‐spectrometry‐based binding assays (MS Binding Assays), targeting the human dopamine, norepinephrine, and serotonin transporters (hDAT, hNET, and hSERT) in simultaneous binding experiments. Using a validated LC–ESI‐MS/MS method for quantification of the selective dopamine transporter inhibitor (R,R)‐4‐(2‐benzhydryloxyethyl)‐1‐(4‐fluorobenzyl)piperidin‐3‐ol ((R,R)‐D‐84), the selective norepinephrine transporter inhibitor (S,S)‐reboxetine, and the selective serotonin reuptake inhibitor (S)‐citalopram, binding affinities at the three monoamine transporters could be characterized simultaneously in a single binding experiment. The performed simultaneous saturation and competition experiments yielded results that are in good accordance with those determined in MS Binding Assays addressing the monoamine transporters individually. The results obtained from this study underscore the potential of MS Binding Assays for simultaneous affinity determination at different targets, which is difficult to accomplish with conventional radioligand binding assays.  相似文献   

6.
We herein present label‐free, mass‐spectrometry‐based binding assays (MS Binding Assays) for the human dopamine, norepinephrine, and serotonin transporters (hDAT, hNET, and hSERT). Using this approach both enantiomers of the triple reuptake inhibitor indatraline as well as its cis‐configured diastereomer were investigated toward hDAT, hNET, and hSERT in saturation experiments. The dissociation rate constants for (1R,3S)‐indatraline binding at hDAT, hNET, and hSERT were determined in kinetic studies. These experiments revealed an allosteric effect of clomipramine on the dissociation of (1R,3S)‐indatraline from hSERT. Finally, a comprehensive set of known monoamine transport inhibitors and substrates was studied in competition experiments at hDAT, hNET, and hSERT, using (1R,3S)‐indatraline as nonlabeled marker. The results are in excellent agreement with those reported for radioligand binding assays. Therefore, the established MS Binding Assays are a promising alternative to the latter for the characterization of new monoamine reuptake inhibitors at DAT, NET, and SERT.  相似文献   

7.
A straightforward screening of a compound library comprising 2439 substances for the identification of new inhibitors for the neurotransmitter transporters GlyT1 and GlyT2 is described. Screening and full-scale competition experiments were performed using recently developed GlyT1 and GlyT2 MS Binding Assays. That way for both targets, GlyT1 and GlyT2, ligands were identified, which exhibited affinities (pKi values) in the low micromolar to sub-micromolar range. The majority of these binders exhibit new chemical scaffolds in the class of GlyT1 and GlyT2 inhibitors, which could be of interest for the development of new ligands with improved affinities for the target proteins. Additionally, compounds with excellent fluorescent properties were found for GlyT2, which renders them promising compounds for future fluorescence-based techniques. All in all, this study demonstrates that MS Binding Assays represent a powerful technology platform also well suited for the screening of compound libraries in a highly reliable and effective manner.  相似文献   

8.
9.
The serotonin 2C (5‐HT2C) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5‐HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5‐HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2‐phenylcyclopropylmethylamine‐based 5‐HT2C agonists make them preferred candidates for further studies.  相似文献   

10.
11.
This study describes the first binding assay for glycine transporter 2 (GlyT2) following the concept of MS Binding Assays. The selective GlyT2 inhibitor Org25543 was employed as a reporter ligand and it was quantified with a highly sensitive and rapid LC-ESI-MS/MS method. Binding of Org25543 at GlyT2 was characterized in kinetic and saturation experiments with an off-rate of 7.07×10−3 s−1, an on-rate of 1.01×106 M−1 s−1, and an equilibrium dissociation constant of 7.45 nM. Furthermore, the inhibitory constants of 19 GlyT ligands were determined in competition experiments. The validity of the GlyT2 affinities determined with the binding assay was examined by a comparison with published inhibitory potencies from various functional assays. With the capability for affinity determination towards GlyT2 the developed MS Binding Assays provide the first tool for affinity profiling of potential ligands and it represents a valuable new alternative to functional assays addressing GlyT2.  相似文献   

12.
13.
Cyclophilin A (CypA) is a member of the immunophilin family of proteins and receptor for the immunosuppressant drug cyclosporin A (CsA). Here we describe the design and synthesis of a new class of small-molecule inhibitors for CypA that are based upon a dimedone template. Electrospray mass spectrometry is utilised as an initial screen to quantify the protein affinity of the ligands. Active inhibitors and fluorescently labelled derivatives are then used as chemical probes for investigating the biological role of cyclophilins in the nematode Caenorhabditis elegans.  相似文献   

14.
15.
Structure‐based virtual screening using a D2 receptor homology model was performed to identify dopamine D2 receptor ligands as potential antipsychotics. From screening a library of 6.5 million compounds, 21 were selected and were subjected to experimental validation. From these 21 compounds tested, ten D2 ligands were identified (47.6 % success rate, among them D2 receptor antagonists, as expected) that have additional affinity for other receptors tested, in particular 5‐HT2A receptors. The affinity (Ki values) of the compounds ranged from 58 nm to about 24 μm . Similarity and fragment analysis indicated a significant degree of structural novelty among the identified compounds. We found one D2 receptor antagonist that did not have a protonatable nitrogen atom, which is a key structural element of the classical D2 pharmacophore model necessary for interaction with the conserved Asp(3.32) residue. This compound exhibited greater than 20‐fold binding selectivity for the D2 receptor over the D3 receptor. We provide additional evidence that the amide hydrogen atom of this compound forms a hydrogen bond with Asp(3.32), as determined by tests of its derivatives that cannot maintain this interaction.  相似文献   

16.
Haloperidol (1 a), a dopamine (D(2)) receptor antagonist, is in clinical use as an antipsychotic agent. Carbon/silicon exchange (sila-substitution) at the 4-position of the piperidine ring of 1 a (R(3)COH --> R(3)SiOH) leads to sila-haloperidol (1 b). Sila-haloperidol was synthesized in a new multistep synthesis, starting from tetramethoxysilane and taking advantage of the properties of the 2,4,6-trimethoxyphenyl unit as a unique protecting group for silicon. The pharmacological profiles of the C/Si analogues 1 a and 1 b were studied in competitive receptor binding assays at D(1)-D(5), sigma(1), and sigma(2) receptors. Sila-haloperidol (1 b) exhibits significantly different receptor subtype selectivities from haloperidol (1 a) at both receptor families. The C/Si analogues 1 a and 1 b were also studied for 1) their physicochemical properties (log D, pK(a), solubility in HBSS buffer (pH 7.4)), 2) their permeability in a human Caco-2 model, 3) their pharmacokinetic profiles in human and rat liver microsomes, and 4) their inhibition of the five major cytochrome P450 isoforms. In addition, the major in vitro metabolites of sila-haloperidol (1 b) in human liver microsomes were identified using mass-spectrometric techniques. Due to the special chemical properties of silicon, the metabolic fates of the C/Si analogues 1 a and 1 b are totally different.  相似文献   

17.
Multiple‐specificity ligands are considered promising pharmacological tools that may show higher efficacy in the treatment of diseases for which the modulation of a single target is therapeutically inadequate. We prepared a set of novel ligands for D1 and D2 dopamine receptors by combining two indolo[2,3‐a]quinolizidine scaffolds with various tripeptide moieties. The binding and functional properties of these molecules were determined by radioligand binding studies in brain striatum membranes and by intracellular cAMP production assays in cells expressing different dopamine receptor subtypes. Some indoloquinolizidine–peptide hybrids, mainly with the trans configuration, showed dual agonist activity at both D1 and D2 dopamine receptors and may therefore be useful for testing the therapeutic potential of multivalent drugs on these targets.  相似文献   

18.
Blaazer AR  Smid P  Kruse CG 《ChemMedChem》2008,3(9):1299-1309
Agonist activation of central 5-HT(2A) receptors results in diverse effects, such as hallucinations and changes of consciousness. Recent findings indicate that activation of the 5-HT(2A) receptor also leads to interesting physiological responses, possibly holding therapeutic value. Selective agonists are needed to study the full therapeutic potential of this receptor. 5-HT(2A) ligands with agonist profiles are primarily derived from phenylalkylamines, indolealkylamines, and certain piperazines. Of these, phenylalkylamines, most notably substituted phenylisopropylamines, are considered the most selective agonists for 5-HT(2) receptors. This review summarizes the structure-activity relationships (SAR) of phenylalkylamines as agonist ligands for 5-HT(2A) receptors. Selectivity is a central theme, as is selectivity for the 5-HT(2A) receptor and for its specific signaling pathways. SAR data from receptor affinity studies, functional assays, behavioral drug discrimination as well as human studies are discussed.  相似文献   

19.
Lithocholic acid (LCA), a physiological ligand for the nuclear receptor FXR and the G‐protein‐coupled receptor TGR5, has been recently described as an antagonist of the EphA2 receptor, a key member of the ephrin signalling system involved in tumour growth. Given the ability of LCA to recognize FXR, TGR5, and EphA2 receptors, we hypothesized that the structural requirements for a small molecule to bind each of these receptors might be similar. We therefore selected a set of commercially available FXR or TGR5 ligands and tested them for their ability to inhibit EphA2 by targeting the EphA2‐ephrin‐A1 interface. Among the selected compounds, the stilbene carboxylic acid GW4064 was identified as an effective antagonist of EphA2, being able to block EphA2 activation in prostate carcinoma cells, in the micromolar range. This finding proposes the “target hopping” approach as a new effective strategy to discover new protein–protein interaction inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号