首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
通过考虑轴线可伸长变化及剪切变形等因素影响,建立了热载荷作用下复合材料夹层梁受弹性地基约束时的几何非线性控制方程。利用打靶法数值求解所得强非线性边值问题,并获得了一边不可移铰支一边固定的夹层梁在横向均匀升温作用下的静态热过屈曲和热弯曲变形数值解。给出了临界升温与地基弹性参数之间的关系曲线,得到了模态跃迁性质,分析了载荷热与地基刚度参数对一阶模态的过屈曲平衡构形的影响。  相似文献   

2.
综合考虑构件轴线伸长和1阶横向剪切变形等条件下,建立横向受热作用且周围有弹性支承约束的夹层梁几何非线性精确数学模型。利用打靶法数值方法获得了两端转角弹簧与横向弹性地基共同约束时夹层梁的静态热过屈曲数值解。改变梁端转角弹簧刚度,获得不同的临界屈曲温度;当改变夹层梁物性参数时,给出平均升温参数与水平轴向压力之间的关系曲线;当两端转角弹簧刚度和弹性地基刚度同时给定时,分析非均匀升温参数与夹层梁热过屈曲和热弯曲组合变形之间的关系。  相似文献   

3.
热过屈曲正交异性圆(环)板的自由振动响应   总被引:2,自引:2,他引:2  
基于vonKármán薄板几何非线性理论,建立了以中面位移为基本未知量的加热极正交异性圆板轴对称大挠度动力学控制方程。然后,将控制方程的响应分解为热过屈曲静态解和振动解两部分,并在小振幅振动假设下得到了板在热过屈曲静平衡构形附近自由振动的线性微分方程。最后,采用打靶法获得了板在热过屈曲前后的固有频率与升温参数之间的特征关系曲线。结果表明,周边面内约束板的前两阶固有频率在热屈曲前随着温度升高而降低,而一旦板进入过屈曲平衡状态,前两阶频率都随着升温而单调增加。  相似文献   

4.
基于Eringen非局部弹性理论和经典薄板理论,利用Hamilton原理推导Winkler-Pasternak弹性地基上面内受压正交各向异性矩形纳米板自由振动的控制微分方程并进行无量纲化。采用一种半解析方法—微分变换法(DTM)将无量纲控制微分方程及边界条件变换为等价的代数方程,得到含有无量纲固有频率和屈曲载荷的特征方程。数值给出了不同边界条件下无量纲地基刚度系数、压力强度、载荷参数、长宽比和纳米尺度对正交各向异性矩形纳米板无量纲固有频率的影响以及不同无量纲地基刚度系数、载荷参数和纳米尺度下的屈曲临界载荷值。结果表明:正交各向异性矩形纳米板的无量纲固有频率随无量纲地基刚度系数、载荷参数和长宽比的增大而增大,随纳米尺度的增大而趋向减小;屈曲临界载荷也随无量纲地基刚度系数的增大而增大,随纳米尺度的增大而减小。  相似文献   

5.
热环境中功能梯度材料圆板的自由振动   总被引:3,自引:0,他引:3  
基于von Kaman经典板理论,建立了功能梯度材料圆板在升温场内的大挠度动力学控制方程.将控制方程的响应分解为热过屈曲静态解和振动解两部分,得到了功能梯度材料圆板在热过屈曲平衡构形附近小振幅线性自由振动的微分方程.采用打靶法同时求热过屈曲和振动问题的控制方程,得到了随温度载荷变化的热过屈曲平衡路径以及前三阶固有频率的数值解.分析和讨论了板的材料梯度参数、温度场分布参数、边界条件等因素对过屈曲变形和振动响应的影响.分析中考虑了功能梯度板的组份材料的物性参数对温度的依赖性.  相似文献   

6.
针对钢箱梁和混凝土薄壁箱梁受压翼缘的稳定问题,基于状态-空间向量法,提出了一种用于弹性支承连续矩形薄板弹性屈曲分析的计算方法。与有限条法结果对比,验证了该方法的可靠性。分析了跨间弹性支承刚度和布置以及荷载参数对屈曲的影响,结果表明:跨间弹性支承对连续矩形薄板屈曲影响明显,屈曲系数随着弹性支承刚度的增大呈非线性增长;等间距、等刚度布置弹性支承有利于板的稳定性,弹性支承的刚度或间距差别越大,对板的稳定性越不利;不同荷载工况下,弹性支承刚度-屈曲系数关系曲线的变化规律基本相同,弹性支承刚度较小时,荷载参数对屈曲系数影响显著,单向受压的屈曲系数可达双向等值受压的两倍。  相似文献   

7.
根据板的非线性动力平衡方程和压缩波前附加约束方程,基于双特征参数法和应力波理论,求解了矩形薄板在面内轴向冲击载荷作用下动力屈曲位移的解析解。揭示了矩形薄板动力屈曲过程中板的厚宽比、屈曲模态、冲击载荷大小和临界屈曲长度之间的关系。求得的屈曲模态与之前文献中用差分解得出的结果吻合良好。  相似文献   

8.
弹性基础上矩形板热后屈曲分析   总被引:2,自引:1,他引:1  
本文给出双参数弹性基础上矩形板在均匀和非均匀(抛物型)热分布作用下后屈曲分析。采用摄动-Galerkin混合法给出完善和非完善矩形板热屈曲载荷和热后屈曲平衡路径。本文同时给出数值算例并讨论各种参数变化的影响。  相似文献   

9.
轴向随动分布载荷作用下简支梁杆的过屈曲   总被引:2,自引:2,他引:0  
基于可伸长梁的大变形理论,建立了受沿轴线分布切向随动载荷作用简支梁的弹性过屈曲控制方程。这是一个包含七个未知函数的强非线性常微分方程两点边值问题,其中将变形后的轴线弧长也作为基本未知量之一。采用打靶法和解析延拓法数值求解所得非线性边值问题,获得了梁的过屈曲平衡路径和平衡构形。结果表明,非保守载荷作用梁的平衡路径与保守载荷作用梁的平衡路径有着明显不同。  相似文献   

10.
基于经典薄板理论,利用Hamilton原理建立变刚度Winkler地基上受压非均质矩形板自由振动与屈曲问题的控制微分方程并进行无量纲化。通过一种半解析方法-微分变换法(DTM)研究其无量纲固有频率和屈曲临界载荷特性。采用DTM将其无量纲控制微分方程及边界条件变换为等价的代数方程,得到含有频率和屈曲载荷的特征方程。将该问题退化为面内变刚度矩形板情形,其DTM解与精确解进行对比,结果表明DTM具有非常高的精度和很强的适用性。计算出在不同边界条件下屈曲临界载荷并分析地基刚度变化参数、弹性模量变化参数、密度变化参数、面内载荷和长宽比对矩形板无量纲固有频率的影响,给出了不同边界条件下变刚度Winkler地基上受压非均质矩形板的前三阶振型。  相似文献   

11.
The main aim of this paper is to investigate the nonlinear buckling and post-buckling of functionally graded stiffened thin circular cylindrical shells surrounded by elastic foundations in thermal environments and under torsional load by analytical approach. Shells are reinforced by closely spaced rings and stringers in which material properties of shell and the stiffeners are assumed to be continuously graded in the thickness direction. The elastic medium is assumed as two-parameter elastic foundation model proposed by Pasternak. Based on the classical shell theory with von Karman geometrical nonlinearity and smeared stiffeners technique, the governing equations are derived. Using Galerkin method with three-term solution of deflection, the closed form to find critical torsional load and post-buckling load–deflection curves are obtained. The effects of temperature, stiffener, foundation, material and dimensional parameters are analyzed.  相似文献   

12.
The buckling and post-buckling problem of elastic annular plates is treated at multiple eigenvalues making strong use of symmetry properties of the problem in deriving bifurcation equations (amplitude equations of the critical modes) from the von Karman plate equations by means of the Ljapunov-Schmidt method. Further, a restricted generic unfolding of the bifurcation equations is made and some practically interesting results concerning the post-buckling behaviour are presented.  相似文献   

13.
The buckling and post-buckling problem of elastic annular plates is treated at multiple eigenvalues making strong use of symmetry properties of the problem in deriving bifurcation equations (amplitude equations of the critical modes) from the von Karman plate equations by means of the Ljapunov-Schmidt method. Further, a restricted generic unfolding of the bifurcation equations is made and some practically interesting results concerning the post-buckling behaviour are presented.  相似文献   

14.
Y. Kiani  M. R. Eslami 《Acta Mechanica》2013,224(5):1045-1060
Thermal buckling analysis of a transversely graded circular plate attached to a centric partial elastic foundation is studied, analytically. Thermomechanical properties of the circular plate are distributed across the thickness based on a power law function. The governing equations of the plate are obtained by means of the classical plate theory. A conventional Winkler-type foundation is assumed to be in contact with the plate which acts in compression as well as in tension. Proper boundary conditions are chosen after pre-buckling analysis of the plate, and stability equations are established via the adjacent equilibrium criterion. To analyze the thermal stability problem, the plate is divided into two sections, a foundation-less domain and an in-contact region. An exact procedure is presented to accurately predict the critical buckling temperature as well as the buckled configuration of the plate. Analysis of various involved parameters including the Winkler parameter, foundation radius, power law index, and loading type is presented. It is concluded that while the loading is symmetric, in many cases, the buckled configuration of the plate is asymmetric.  相似文献   

15.
The buckling and post-buckling behaviors of variable stiffness composite laminates (VSCL) with curvilinear fibers were investigated and compared with constant stiffness composite laminates (CSCL) with straight fibers. A VSCL box structure was evaluated under a pure bending moment. The results of the comparative test showed that the critical buckling load of the VSCL box was approximately 3% higher than that of the CSCL box. However, the post-buckling load-bearing capacity was similar due to the layup angle and the immature status of the material processing technology. The properties of the VSCL and CSCL boxes under a pure bending moment were simulated using the Hashin criterion and cohesive interface elements. The simulation results are consistent with the experimental results in stiffness, critical buckling load and failure modes but not in post-buckling load capacity. The results of the experiment, the simulation and laminated plate theory show that VSCL greatly improves the critical buckling load but has little influence on the post-buckling load-bearing capacity.  相似文献   

16.
In this article, thermal buckling analysis of moderately thick functionally graded annular sector plate is studied. The equilibrium and stability equations are derived using first order shear deformation plate theory. These equations are five highly coupled partial differential equations. By using an analytical method, the coupled stability equations are replaced by four decoupled equations. Solving the decoupled equations and satisfying the boundary conditions, the critical buckling temperature is found analytically. To this end, it is assumed that the annular sector plate is simply supported in radial edges and it has arbitrary boundary conditions along the circular edges. Thermal buckling of functionally graded annular sector plate for two types of thermal loading, uniform temperature rise and gradient through the thickness, are investigated. Finally, the effects of boundary conditions, power law index, plate thickness, annularity and sector angle on the critical buckling temperature of functionally graded annular sector plates are discussed in details.  相似文献   

17.
Thermal postbuckling analysis is presented for a simply supported, shear-deformable composite laminated plate subjected to uniform or nonuniform parabolic temperature loading and resting on a two-parameter (Pasternak-type) elastic foundation. The initial geometric imperfection of the plate is taken into account. Reddy's third-order shear-deformation plate theory with von Karman nonlinearity is used. The governing equations also include the plate-foundation interaction and thermal effects. The analysis uses a mixed Galerkin-perturbation technique to determine thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, symmetric cross-ply laminated plates resting on Pasternak-type elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The influence played by a number of effects, among them foundation stiffness, transverse shear deformation, plate aspect ratio, fiber orientation, thermal load ratio, and initial geometric imperfections, is studied. Typical results are presented in dimensionless graphical form.  相似文献   

18.
A thermal postbuckling analysis is presented for a simply supported, moderately thick rectangular plate subjected to uniform or nonuniform tent-like temperature loading and resting on a softening nonlinear elastic foundation. The initial geometrical imperfection of the plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the first-order shear-deformation effect, and including plate-foundation interaction and thermal effects. The analysis uses a deflection-type perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick plates resting on softening nonlinear elastic foundations. The effects played by foundation stiffness, transverse shear deformation, plate aspect ratio, thermal load ratio and initial geometrical imperfections are studied. Typical results are presented in dimensionless graphical form and exhibit interesting imperfection sensitivity.  相似文献   

19.
Abstract

In this paper, the effects of hygrothermal conditions on various behaviors, such as bending, free vibration, mechanical and thermal buckling, of exponentially graded microplates lying on two-parameter elastic foundations are investigated. The trigonometric four-variable plate theory incorporated to the modified couple stress theory (MCST) is employed to derive the equations of motion. The present MCST contains an internal material length scale parameter, thus it can capture the size effect. The microplate is assumed to be subjected to a temperature rise and moisture concentration which are varied linearly through the thickness of the plate. Based on an exponential law, the material properties of the microplate are graded only in z direction. The equations of motion are solved analytically to obtain the displacements, stresses, eigenfrequencies and critical buckling load and temperature of the microplates. The present results are validated by comparing them with those previously published. The numerical examples reveal that considering the size effect and/or the elastic foundations leads to an increment in plate stiffness and thereby leads to a decrement in the deflection and an increment in eigenfrequency and buckling loads. It is also shown that the size effect is negligible for the thicker plate.  相似文献   

20.
In this article, an exact analytical solution for buckling analysis of moderately thick functionally graded (FG) sector plates resting on Winkler elastic foundation is presented. The equilibrium equations are derived according to the first order shear deformation plate theory. Because of the coupling between the bending and stretching equilibrium equations of FG plates, these plates have deflection under in-plane loads lower than the critical buckling load acting on the mid-plane. The conditions under which FG plates remain flat in the pre-buckling configuration are investigated and the stability equations are obtained based on the flat plate assumption in the pre-buckling state. The stability equations are simplified into decoupled equations and solved analytically for plates having simply supported boundary condition on the straight edges. The critical buckling load is obtained and the effects of geometrical parameters and power law index on the stability of functionally graded sector plates are studded. The results for the critical buckling load of moderately thick functionally graded sector plates resting on elastic foundation are reported for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号