首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AISI1045 steel was modified by laser heat-treatment and conventional heat treatment. The friction and wear behaviors of the steel specimens after various surface modifications sliding against SAE52100 steel under the lubrication of liquid paraffin containing sulphurized olefin were comparatively investigated on an Optimol SRV oscillating friction and wear tester. The worn surface morphologies of the modified steel specimens were analyzed using a scanning electron microscope. The elemental compositions and chemical states of some typical elements on the worn surfaces of the modified steel specimens were analyzed with an energy dispersive X-ray analyzer and X-ray photoelectron spectroscope, respectively. It was found that the laser heat-treated specimen showed the highest hardness and best wear-resistance. The laser heat-treated and conventionally heat treated AISI1045 steel specimens sliding against SAE52100 steel under the lubrication of liquid paraffin containing sulphurized olefin registered smaller friction coefficients than under the lubrication of liquid paraffin alone. This was partly attributed to the increased hardness of the modified specimens. The tribochemical reaction between the steel and the active elements in the additive was involved in the sliding of the modified steel specimens against SAE52100 steel ball under the boundary lubricating condition, with the formation of a surface protective film composed of various tribochemical products. This also contributed to improve the friction and wear behavior of the modified steel specimens. The steel specimens subject to different surface modifications showed differences in the wear mechanisms under the boundary lubricating condition as well. Namely, the tempered steel specimen was mainly characterized by plastic deformation and pitting, the quenched specimen by grooves and delaminating, and the laser heat-treated one by polishing and mild adhesion.  相似文献   

2.
AISI-1045 steel was treated with solid boron permeation, and the interaction between the modified surface layer and the lubricating additive zinc dialkyldithio-phosphate (ZDDP) was examined. The friction and wear behavior of the treated and untreated steel specimens were compared. The phase composition of the boron-permeated layer was examined by means of X-ray diffraction. The chemical states of several typical elements on the worn surfaces of the treated and untreated steel surfaces were examined by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy. Results showed that the wear-resistance of boron-permeated specimens was higher than that of the untreated ones. This was partly attributed to the change in the hardness and phase composition of the steel surfaces after boron permeation. Tribochemical reactions between steel and the active elements of the additive occurred during the sliding of the treated and untreated steel discs against an AISI-52100 steel ball using different lubricants. The resultant surface protective films containing various tribochemical products, together with the adsorbed boundary lubricating film, contributed to the reduction of friction and wear.  相似文献   

3.
沙尘环境对金属抗磨损特性的影响   总被引:1,自引:0,他引:1  
李春霞  阎逢元 《润滑与密封》2007,32(11):150-153
通过向摩擦副所在隔离空间内鼓沙的方式实现对自然沙尘环境的模拟。在沙尘环境和干摩擦情况下,对比研究了随着载荷的增加,沙尘环境的存在对C52100铜、2124铝、AISI-1045钢、Z25铸铁、AISI-52100钢5种不同硬度的典型金属抗磨损行为的影响。结果表明,在沙尘条件下,5种金属的磨损率随载荷的变化呈现一定的变化规律,C52100铜和52100钢的磨损率均随载荷的增加而减小,2124铝和Z25铸铁的磨损率随载荷的增加而增大,而1045钢的磨损率则先增大后减小,但磨损率随载荷变化非常小。沙尘的存在使52100钢、1045钢和Z25铸铁的磨损率比干摩擦条件下有大幅度的减小,但是却加剧了2124铝在较高载荷下的磨损,这说明对不同的材料而言,沙尘所起的作用是不同的,它可能会加剧材料的磨损,但也有可能提高材料的抗磨损性能。  相似文献   

4.
Fe–Ni–RE self-fluxing alloy powders were flame sprayed onto 1045 carbon steel. The tribological properties of Fe–Ni–RE alloy coatings under dry sliding against SAE52100 steel at ambient conditions were studied on an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration. Effects of load and sliding speed on tribological properties of the Fe–Ni–RE coatings were investigated. The worn surfaces of the Fe–Ni–RE alloy coatings were examined with a scanning electron microscopy(SEM) and an energy-dispersive spectroscopy(EDS). It was found that the Fe–Ni–RE alloy coatings had better wear resistance than the SAE52100 steel. An adhered oxide debris layer was formed on the worn surface in friction. Area of the friction layer varied with variety of sliding speed, but did not vary with load. The oxide layer contributed to decreased wear, but increased friction. Wear rate of the material increased with the load, but dramatically decreased at first and then slightly decreased the sliding speed. The friction coefficient of the material was 0.40-0.58, and decreased slightly with the load, but increased with sliding speed at first, and then tended to be a constant value. Wear mechanism of the coatings was oxidation wear and a large amount of counterpart material was transferred to the coatings.  相似文献   

5.
The possibility of applying the eddy-current method to estimate the composition, hardness, abrasive wear-resistance, and wear resistance under sliding friction conditions of chromium-nickel and chromium-nickel-cobalt coatings prepared by gas-powder laser cladding was studied. Variations in the readings of an eddy-current instrument along the depth of the surface cladding layer and with changing thickness of coatings, which are due to the distribution of structural components in coatings and large differences between the electromagnetic characteristics of cladding layers and the ferromagnetic steel base of specimens, were determined. A technique of the eddy-current testing of the thickness of Cr-Ni and Cr-Ni-Co cladding coatings on a ferromagnetic steel base is proposed. It allows one to estimate the quality of the strengthening laser cladding and subsequent grinding, monitor the state of coatings under service conditions, and forecast the residual life of cladding elements subjected to intense wear.  相似文献   

6.
不同水介质下GCr15/45#钢微动腐蚀行为研究   总被引:1,自引:1,他引:1  
在洁净水、酸性水和海水3种不同水介质条件下,对GCr15/45^#钢进行了不同位移幅值的微动磨损试验。结果表明:洁净水和酸性水改变了微动区域,降低了摩擦系数和磨损量,具有润滑效果,磨损受水润滑和介质腐蚀双重作用影响,且润滑作用随位移幅值的增加而减弱;对海水,摩擦系数与干态相近,电化学腐蚀作用强烈,磨痕中可观察到大量点蚀坑。  相似文献   

7.
采用电火花表面沉积(ESD)技术,选用YG-8硬质合金和石墨两种电极,对2Cr13不锈钢进行表面强化处理。研究了强化层深度的影响因素,采用辉光放电谱仪(GDS)测试强化层元素分布,用X射线衍射仪(XRD)分析组织结构,用球盘磨损试验机评价耐磨性能,用喷砂型冲蚀装置评价冲蚀性能。结果表明:强化层与基体为冶金结合,其深度随电源电压增加而增大,Ar气保护能有效地降低强化层中N、O含量。石墨电极强化层存在大量的Fe3C、奥氏体和少量石墨;硬质合金电极强化层存在大量的W2C、Co6W6C和WC1-x。经YG-8和C电极强化后,2Cr13不锈钢表面的硬度大幅度提高,摩擦系数明显降低,粘着磨损得到有效的控制,耐磨性能得到显著的改善。在10°小冲蚀角条件下,强化层明显提高了基体的抗石英砂冲蚀性能,而90°垂直冲蚀时,强化层的抗冲蚀性能却不及基体,原因是强化层韧性不及基材。  相似文献   

8.
The sliding wear behaviour of several compositions of Fe-, Co- and Ni-based metallic glasses have been studied while rubbing against AISI 52100 bearing steel under reciprocating-sliding conditions. The wear resistances of Fe-based metallic glasses and Ni-based metallic glass (MBF 50) have been found to be superior to that of the mating AISI 52100 bearing steel. The examination of worn surfaces indicates that the superior wear resistance of metallic glasses is not merely owing to their high hardness but it is determined by phenomena of material transfer vis-à-vis the mating material and the formation of protective oxide layers on the metallic-glass surface during sliding. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The behavior of frictional hardening and softening of steel 52100 with different microstructures during dry sliding was studied based on dynamic metallographic analysis. It was demonstrated that such frictional behavior significantly affected wear resistance of the steel. The results showed that anti-softening microstructures exhibited a rather better wear resistance; the difference in the wear resistance of various steels with different microstructures was caused by the difference in the energy consumption in surface layers during wear. These results indicate that the original structures and properties of steels should not be taken as the only criterion for judging the wear resistance. It is necessary to consider the influence of dynamic microstructural changes under specific wear conditions in order to evaluate the wear resistance.  相似文献   

10.
《Wear》1996,199(2):153-156
A complex of lanthanum dialkyldithiocarbamate and phenanthroline was synthesized, and its lubricating and antiwear behaviors as an additive in lithium grease were evaluated using a Timken tester with a SAE52100 steel ring sliding under an A1 2024 block. As a comparison, the wear behavior of a steel-on-steel system under the lubrication of the same grease was also investigated under the same test conditions. The protective film formed on the rubbed surface of aluminum was investigated by both XPS and AES. Results of friction and wear tests indicate that this rare earth complex possess good antiwear ability for aluminum, and its antiwear and friction reduction properties for the aluminum-on-steel system is even superior to that for the steel-on-steel system. The results of AES and XPS analyses illustrate that the prepared La complex as an additive in lithium grease forms a protective film containing lanthanum oxide, aluminum sulphide, and an organic compound containing sulfur and nitrogen on the rubbed surface of aluminum.  相似文献   

11.
A.W. Ruff  L.K. Ives 《Wear》1982,75(2):285-301
Studies were carried out on the dry sliding wear behavior of electron beam melted surface layers on a type 0–2 tool steel and on annealed and conventionally hardened 0–2 steel specimens for comparison. Wear tests were conducted in a flowing argon atmosphere at a sliding speed of 20 cm s?1 and a load of 10 N against a 52100 bearing steel ring. Wear surface morphology was studied along with subsurface structure using optical and electron microscopy methods. The study concentrated on the wear of this steel after different processing treatments. Electron beam surface melting and subsequent rapid solidification in situ of the steel produced a highly refined martensitic microstructure having higher hardness values and better wear resistance than obtained using conventional quench hardening of that steel. Carbide distribution and martensite phase morphology were affected by this surface melting process; those microstructural characteristics influenced the wear behavior. Variations in electron beam power and surface speed during melting were explored in terms of their effect on the resulting surface layer. The wear test system used was computer interfaced and controlled, permitting continuous measurements of wear depth and friction force.  相似文献   

12.
An Fe-Al coating consisting of FeAl and Fe3Al was prepared on AISI 1045 steel by hot-dip aluminizing and subsequent high-temperature diffusion. Dry sliding wear tests were performed for Fe-Al coating against AISI 52100 steel under various sliding speeds and loads. During sliding, thin tribolayers formed on the worn surfaces of the Fe-Al coating. After wear, they were observed to be a nonoxidized mechanically mixed layer (MML) at 0.5 m/s, an oxide-containing MML at 0.75–2.68 m/s, and an in situ oxide layer at 4 m/s. The tribolayers presented a close relation with the wear behavior. Because of their different ingredients, structures, and types, the tribolayers resulted in significant changes in the wear behavior. At 0.75–2.68 m/s (except for 2.68 m/s, 40 N), the compact tribooxide layers exerted a protective function for Fe-Al coating to reduce the wear rate. However, for the tribolayers containing no or trace tribooxides at 0.5 m/s or the unstable ones formed at 2.68 m/s, 40 N and 4 m/s, no protection was presented. In these cases, the Fe-Al coating would be partly or totally ground off, thus presenting poor wear resistance at high wear rates.  相似文献   

13.
316L stainless steel and Ti6Al4V alloy were plasma nitrided at different treatment parameters, and the wear behaviors of the modified layers formed on the surface during nitriding were investigated by multi-pass scratch test. Phase structure and cross-sections of modified layers were also examined with XRD and SEM. While a single modified layer formed on surface of the 316L stainless steel, both modified and diffusion layers were observed on the surface of the Ti6Al4V alloy after nitriding. As a result, it was observed that phase structure and thickness for modified layers of 316L stainless steel and Ti6Al4V alloy, respectively, were the significant parameters for friction coefficient and wear rate. In addition, diffusion layer formed during the nitriding process caused on increase of wear resistance of Ti6Al4V alloy by supporting the modified layer on the surface.  相似文献   

14.
Jia  Zhengfeng  Xia  Yanqiu  Pang  Xianjuan  Hao  Junying 《Tribology Letters》2011,41(1):247-256
Three synthesized benzotriazole-containing borate esters were separately added into poly-alpha-olefin (PAO) as additives, using molybdenum dithiocarbamate (MoDTC) as the comparison. The friction and wear behavior of Ti-DLC and Ti/Al-DLC coating on nitrided AISI-1045 steel sliding against AISI 52100 steel under the lubrication of PAO containing various additives was evaluated using a reciprocating ball-on-disk friction and wear tester. The morphology and chemical feature of the worn surfaces of the DLC coatings were observed and analyzed using a three dimensional (3D) surface profiler, a scanning electron microscope (SEM), and an X-ray photoelectron spectroscope (XPS). Results show that the three kinds of benzotriazole-containing borate esters as additives in PAO had much better tribological properties than MoDTC; the wear resistance of Ti/Al-DLC coating was better than Ti-DLC coating.  相似文献   

15.
The fretting wear-resistant properties of ion-sulphuration+shot-peening and shot-peening+ion-sulphuration duplex-treated coatings on 1045 steel substrate were investigated. The results show that the fretting wear-resistance of shot-peening+ion-sulphuration coating was better than that of the ion-sulphuration+shot-peening coating. The fretting wear process of the duplex-treated coatings in the gross slip regime could be described as the sulphuration coatings playing an important lubricating role in the incubation period. Then a series of changes took place continuously and alternatively on the contact surfaces, including adhesion, material transfer, oxidation, delamination of the oxide layer and degradation. In the last stage, the trapping, pulverization and elimination of debris restrained the adhesion between the contact surfaces and led to a decrease in the friction coefficient.  相似文献   

16.
E. Takeuchi  K. Fujii  T. Katagiri 《Wear》1979,55(1):121-130
The wear characteristics and the mechanism of sliding wear of boronized steel under unlubricated conditions were studied. Characteristic wear curves of FeB and Fe2B boride layers formed on SAE 1045 steel were similar in form. The maximum wear rates were obtained under a sliding velocity of 0.30 m s?1 for FeB specimens and 0.50 m s?1 for Fe2B specimens. Under such conditions both mechanical wear caused by scratching and oxidative wear occurred. Under conditions of mild wear the wear loss was caused mainly by oxidative wear. Under conditions of heavy wear destruction of the sliding surface was caused by thermal stress. The wear debris was composed principally of iron oxides (α Fe2O3, Fe3O4) formed by oxidative wear, α iron and borides (FeB, Fe2B) produced by mechanical wear and B2O3 produced by the preferential oxidation of boron in the boride layer.  相似文献   

17.
The white layer (WL) generally refers to an untempered martensite layer generated by severe sliding conditions, such as cutting, drilling, grinding, milling, and electron-discharge machining. Numerous tribologists have investigated the effect of the WL on wear behavior, but this phenomenon is not yet clearly understood because no attempt has been made to correlate the wear mechanism of the WL with its wear behavior. It is necessary to investigate the effects of the WL on wear comprehensively. Therefore, elasto-plastic properties, wear resistance, and wear mechanism of WL were studied with nanoindentation and wear tests. The results of this study show that the elastic moduli, yield strength, and hardness of the WL increased by approximately 170, 390, and 180%, respectively. Thus, it was found that the WL had distinct properties with respect to the substrate of AISI 52100 steel. It is possible that the increased surface hardness is an advantage in terms of wear resistance. However, the advantage diminishes, and the WL is subject to wear when delamination dominates the wear mechanism.  相似文献   

18.
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.  相似文献   

19.
The effects of the oxide layer formed on the wear tracks of a titanium nitride (TiN) coated silicon wafer on friction and wear characteristics were investigated. Silicon wafers were used as the substrate of coated disk specimens, which were prepared by depositing TiN coating with 1.74 m in coating thickness using the arc ion-plating method. SAE 52100 steel balls were used as the counter-faces. The tests were performed both in air for forming an oxide layer on the wear track and in nitrogen to avoid oxidation. This paper reports the characterization of the oxide layer and its effects on friction and wear characteristics using Auger electron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The TiN coating with the oxides shows relatively high friction compared to that without an oxide layer. The thickness of the layer formed on the surfaces of the TiN coated silicon wafer is very thin compared to the thickness of the TiN coating. The oxide layer dominates the frictional characteristics between the two materials and induces a relative high friction.  相似文献   

20.
P. Bala Srinivasan  C. Blawert  W. Dietzel 《Wear》2009,266(11-12):1241-1247
A cast AZ91 magnesium alloy was plasma electrolytic oxidation (PEO) coated using a pulsed unipolar power source in a silicate based electrolyte. Constant processing conditions for two different durations were chosen to obtain coatings of 10 and 20 μm thickness. The dry sliding wear studies performed on this alloy with and without PEO coatings against an AISI 52100 steel ball counterpart showed that the PEO coating improved the wear resistance. The thickness of the PEO coating was found to be highly influential in imparting the wear resistance to this alloy, especially in conditions involving higher contact stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号