首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D Zhang  X Wen  L Shi  T Yan  J Zhang 《Nanoscale》2012,4(17):5440-5446
Capacitive deionization (CDI) with low-energy consumption and no secondary waste is emerging as a novel desalination technology. Graphene/mesoporous carbon (GE/MC) composites have been prepared via a direct triblock-copolymer-templating method and used as CDI electrodes for the first time. The influences of GE content on the textural properties and electrochemical performance were studied. The transmission electron microscopy and nitrogen adsorption-desorption analysis indicate that mesoporous structures are well retained and the composites display improved specific surface area and pore size distribution, as well as pore volume. Well dispersed GE nanosheets are deduced to be beneficial for enhanced electrical conductivity. The electrochemical performance of electrodes in an NaCl aqueous solution was characterized by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy measurements. The composite electrodes perform better on the capacitance values, conductive behaviour, rate performance and cyclic stability. The desalination capacity of the electrodes was evaluated by a batch mode electrosorptive experiment and the amount of adsorbed ions can reach 731 μg g(-1) for the GE/MC composite electrode with a GE content of 5 wt%, which is much higher than that of MC alone (590 μg g(-1)). The enhanced CDI performance of the composite electrodes can be attributed to the better conductive behaviour and higher specific surface area.  相似文献   

2.
A series of polyaniline/carbon nanotube array (PANI/CNTA) composite electrodes are prepared by electrodeposition of PANI onto CNTA electrodes by 100-500 cyclic voltammetry (CV) cycles, with the aim to investigate the influence of microstructure on the capacitive performance of PANI/CNTA composites. The morphology of PANI/CNTA composites varies remarkably with the CV cycles of electrodeposition. The optimum condition is obtained for the PANI/CNTA composite prepared by 100 CV cycles, corresponding to the highest specific capacitance, best rate performance, and longest cycle life, which are much better than that of activated carbon fiber cloth, the PANI electrodeposited on stainless steel substrate, and CNTA electrode. The forming process of the microstructure and its influence on the capacitive performance of PANI/CNTA composites are presented in this paper.  相似文献   

3.
选用石墨烯气凝胶(GA)作为载体,负载MnO2纳米颗粒,构建新型石墨烯气凝胶-MnO2复合材料(MnGA),并制备电容电极,研究复合材料的电容去离子性能。结果表明,MnO2在石墨烯片层上可形成一维线状结构,减弱石墨烯片层间的堆叠效应,提升材料电容,从而提高了电极的脱盐性能,最大电容脱盐量达到25.78 mg/g;NaCl溶液的初始浓度、供电电压和进水流速均会对电容脱盐量产生影响。  相似文献   

4.
《Ceramics International》2016,42(11):12644-12650
Hierarchical nickel oxide/graphene oxide (NiO/GO) and nickel oxide/graphene oxide/silver (NiO/GO/Ag) heterostructures were sucessfully fabricated as high-performance supercapacitors electrode materials by using a hydrothermal process and a photoreduction process. The experimental results showed that the NiO/GO/Ag heterostructure electrodes showed better electrochemical performance than those of NiO/GO and bare NiO nanosheets. The NiO/GO/Ag electrode exhibited a higher specific capacitance of 229 F g−1 at a current density of 1 A g−1, higher than that of 161 F g−1 for NiO/GO composites. Furthermore, NiO/GO/Ag electrode also showed good rate capability (still 200 F g−1 at 6 A g−1) and cycling stability (24% loss after 2000 repetitive cycles at a scan rate of 20 mV s−1). The enhanced capacitive performance of the NiO/GO/Ag composites was mainly attributed to the introduction of Ag nanoparticles, which increased the electrical conductivities of the composites, and promoted the electron transfer between the active components. This study suggested that NiO/GO/Ag composites were a promising class of electrode materials for high performance energy storage applications.  相似文献   

5.
We developed carbon nanotube wires (CNWs) and monitored in situ their electrical properties at high temperature conditions for the first time. The dominant type of CNTs present in the material and packing density of thereof proved to have a dominant effect on the thermal stability of CNWs. Furthermore, we showed that kinetics of CNW oxidation plays an important role and slow heating rates or prolonged heating times are essential for the proper determination of thermal stability of CNTs. To enhance the stability at high temperatures, we applied SiC coating onto the CNWs, what allowed a 300 °C improvement to the operational window, eventually reaching 700 °C in the long-haul. Correlation of the change in electrical properties with thermogravimetric response showed that the loss of electrical percolation takes place at 100 °C lower temperature than the last observed weight loss in CNTs content. Finally, we demonstrated feasibility of SiC-coated CNWs under high temperature conditions, by creating a heating device out of them. The presence of SiC layer gave rise to a significant improvement to the thermal stability of the CNT heaters, which now offer unprecedented range of operation reaching 700 °C, as compared to 400 °C when uncoated.  相似文献   

6.
《Ceramics International》2023,49(7):11167-11177
Lanthanum cerate (LC: La2Ce2O7) is a potential material for thermal barrier coating, whose improved toughness is a crucial necessity for the pathway of its industrialization. Herein, we demonstrated a promising approach to develop graphene/carbon nanotube hybrid composite coating using a large throughput and atmospheric plasma spraying method. Graphene nanoplatelets (GNP: 1 wt %) and carbon nanotube (CNT: 0.5 wt %) reinforced lanthanum cerate (LCGC) hybrid composite coatings were deposited on the Inconel substrate. Addition of 1 wt % GNP and 0.5 wt % CNT in LC matrix has significantly increased its relative density, hardness, and elastic modulus up to 97.2%, 2–3 folds, 3–4 folds, respectively. An impressive improvement of indentation toughness (8.04 ± 0.2 MPa m0.5) was observed on LCGC coating, which is ~8 times higher comparing the LC coating. The toughening was attributed to the factors: such as the distribution of GNPs and CNTs in the LC matrix, synergistic toughening offered by the GNPs and CNTs; (i) GNP/CNT pull-out, (ii) crack bridging and arresting, (iii) splat sandwiching, mechanical interlocking, etc. Finally, this improved toughness offered an exceptional thermal shock performance up to 1721 cycles at 1800 °C, without any major failure on the coating. Therefore, the GNP and CNT-reinforced LC hybrid composite coating can be recommended to open a path for turbine industries.  相似文献   

7.
用KOH对市售的粉末活性炭进行表面改性。采用BET分析改性前后活性炭的表面结构,并采用活性炭涂层电极构建电容去离子吸附装置,研究改性后电极的去离子效果。研究表明:经过KOH改性后,活性炭的比表面积从519.25 m2/g增加到975.07 m2/g,提高了87.78%,中孔孔容占总孔孔容的百分比提高了48.28%,改性后活性炭的孔隙结构和孔径的分布更有利于溶液中的Na+和Cl-通过,提高了电极的吸附速率。  相似文献   

8.
Ti3C2Tx is a promising intercalation-type electrode material for capacitive deionization (CDI). However, Ti3C2Tx, obtained from traditional synthesized Ti3AlC2, is with large particle size and undersized interlayer space, which can easily lead to the longer ion diffusion path, fewer adsorption sites, and higher ion diffusion barrier in CDI process. In this work, subsize and Na+ intercalated Ti3C2Tx (Na+-Ti3C2Tx-MS) was prepared by HF etching KCl-assisted molten-salt synthesized Ti3AlC2 and following NaOH treatment. The Na+-Ti3C2Tx-MS achieves a high electrosorption capacity of 14.8 mg/g and a high charge efficiency of 0.81 at the applied voltage of 1.2 V in 100 mg/L NaCl solution. Besides, the stable desalination performance of Na+-Ti3C2Tx-MS has been confirmed. The superior performance of Na+-Ti3C2Tx-MS can be attributed to the subsize particle and larger interlayer space. Both two factors can effectively increase ions adsorption sites, shorten diffusion path lengths, and reduce diffusion barriers in the CDI process.  相似文献   

9.
10.
采用循环伏安一步共聚法在碳纳米管修饰的铂基体上制备出电活性CNTs/PANI/NiHCF复合膜;用循环伏安(CV)、恒电流充放电和电化学阻抗(EIS)等测试了复合膜的循环稳定性与电化学容量性能.研究表明,在电流密度为2 mA/cm~2时,CNTs/PANI/NiHCF复合膜的比容量高达217.69 F/g,比能量高达24.49 Wh/ks,当电流密度为10mA/cm~2时比容量仍可达212.98F/g,比功率可达8 489.75 W/kg,具有良好的功率特性和快速克放电能力;在2000次循环充放电过程中,CNTs/PANI/NiHCF/复合膜的容量仅衰减19.92%,电荷充放电效率一直保持在99%以上,是一种优异的超级电容器材料.  相似文献   

11.
A film composed of graphene (GN) sheets, polyaniline (PANI) and carbon nanotubes (CNTs) has been fabricated by reducing a graphite oxide (GO)/PANI/CNT precursor prepared by flow-directed assembly from a complex dispersion of GO and PANI/CNT, followed by reoxidation and redoping of the reduced PANI in the composite to restore the conducting PANI structure. Scanning electron microscope images indicate that the ternary composite film is a layered structure with coaxial PANI/CNT nanocables uniformly sandwiched between the GN sheets. Such novel hierarchical structure with high electrical conductivity perfectly facilitates contact between electrolyte ions and PANI for faradaic energy storage and efficiently utilizes the double-layer capacitance at the electrode–electrolyte interfaces. The specific capacitance of the GN/PANI/CNT estimated by galvanostatic charge/discharge measurement is 569 F g−1 (or 188 F cm−3 for volumetric capacitance) at a current density of 0.1 A g−1. In addition, the GN/PANI/CNT exhibits good rate capability (60% capacity retention at 10 A g−1) and superior cycling stability (4% fade after 5000 continuous charge/discharge cycles).  相似文献   

12.
We report a new concept for capacitive deionization with simple and cheap porous bipolar intermediate graphite electrodes which is operated continuously by constant or alternating polarity without any down time for electrode saturation, regeneration and rinsing steps and certainly without any permselective ion exchange membranes. The proposed process utilizes the advantages of the classical electrodeionization technologies combining them all to a unified continuous capacitive deionization-continuous electrodeionization-electrodialysis-electrodialysis reversal process. Separate and unchanged diluate and concentrate compartments are created in two modes, first by periodical charging/discharging the bipolar intermediate electrodes through a pulsating electric field and second by simultaneous charging/discharging them through a constant or pulsating electric field and electrostatic shielding. Because of coion permeation and the convenience of alternating the polarity without any negative impact on the deionization process, the new technique is less affected by the known membrane associated limitation, such as concentration polarization, limiting current density or scaling. The new electrochemical deionization technique is suitable for regeneration of ion exchange resins and production of high purity deionized water, removal of heavy metal ions from industrial effluents and desalination of brackish or seawater.  相似文献   

13.
This study examines the direct assembly of hybrid graphene nanosheets (GNSs) and multiwalled carbon nanotubes (MWCNTs) onto Ni current collectors in the presence of an electric field. The dissociation of Ni nitrate salt, which provides ions to charge the GNSs and MWCNTs positively, facilitates the homogeneous dispersion of each powder and assists in electrophoretic deposition. Direct assembly by this electrophoretic deposition results in the effective packing of GNS/MWCNT composites without any appreciable agglomeration, which is desirable for achieving high electrochemical performance of the composite electrodes in Li-ion batteries. Hence, GNS/MWCNT composite electrodes exhibit higher specific capacity compared to electrodes made of pure GNSs or MWCNTs owing to better realization of electrolyte permeability and Li-ion transfer.  相似文献   

14.
A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film has been fabricated by flow-directed assembly from a complex dispersion of graphite oxide (GO) and pristine MWCNTs followed by the use of gas-based hydrazine to reduce the GO into GN sheets. The GN/MWCNT (16 wt.% MWCNTs) film characterized by Fourier transformation infrared spectra, X-ray diffraction and scanning electron microscope has a layered structure with MWCNTs uniformly sandwiched between the GN sheets. The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets, increasing electrolyte/electrode contact area and facilitating transportation of electrolyte ion and electron into the inner region of electrode. Electrochemical data demonstrate that the GN/MWCNT film possesses a specific capacitance of 265 F g−1 at 0.1 A g−1 and a good rate capability (49% capacity retention at 50 A g−1), and displays an excellent specific capacitance retention of 97% after 2000 continuous charge/discharge cycles. The results of electrochemical measurements indicate that the freestanding GN/MWCNT film has a potential application in flexible energy storage devices.  相似文献   

15.
《Ceramics International》2017,43(15):11556-11562
The ternary composite, carbon coated hollow ZnSnO3 (ZS@C) cubes encapsulated in reduced graphene oxide sheets (ZS@C/rGO), was synthesized via low-temperature coprecipitation and colloid electrostatic self-assembly. The uniform carbon-coating layer not only plays a role in buffering the volume change of ZnSnO3 cubes in the charging/discharging processes, but also forms three-dimensional network with the cooperation of graphene to maintain the structural integrity and improve the electrical conductivity. The results show that the reduced graphene oxide sheets encapsulated ZS@C microcubes with a typical core-shell structure of ~700 nm in size exhibit an improved electrochemical performance compared with bare ZS@C microcubes. The ZS@C/rGO electrode delivered an initial discharge capacity of 1984 mA h g−1 at a current density of 0.1 A g−1 and maintained a capacity of 1040 mA h g−1 after 45 cycles. High specific capacity and superior cycle stability indicate that the ZS@C/rGO composite has a great potential for the application of lithium-ion anode material.  相似文献   

16.
Pei  Ziyuan  Zhou  Jianping  Xu  Xiufeng  Liu  Jinman  Wang  Hongjian  Li  Yulin  Chen  Qi  Sui  Zhuyin 《Journal of Porous Materials》2022,29(2):415-422
Journal of Porous Materials - Heteroatom-doped porous carbon materials have attracted extensive attention because of their great potential in improving electrochemical properties. In the present...  相似文献   

17.
Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI)community.Understanding the causes of performance decay in traditional carbons is crucial to design a high-performance material.Based on this,here,nitrogen-doped activated carbon(NAC)was prepared by pyrolyzing the blend of activated carbon powder(ACP)and melamine for the positive electrode of asymmetric CDI.By comparing the indicators changes such as conductivity,salt adsorption capacity,pH,and charge efficiency of the symmetrical ACP-ACP device to the asymmetric ACP-NAC device under different CDI cycles,as well as the changes of the electrochemical properties of anode and cathode materials after long-term operation,the reasons for the decline of the stability of the CDI performance were revealed.It was found that the carboxyl functional groups generated by the electro-oxidation of anode carbon materials make the anode zero-charge potential(Epzc)shift positively,which results in the uneven distribution of potential windows of CDI units and affects the adsorption capacity.Furthermore,by understanding the electron density on C atoms surrounding the N atoms,we attribute the increased cyclic stability to the enhanced negativity of the charge of carbon atoms adjacent to quaternary-N and pyridinic-oxide-N.  相似文献   

18.
《应用化工》2022,(8):2031-2036
为改善SBS改性沥青的路用性能及相容性,采用高速剪切法,将碳纳米管掺入SBS改性沥青中,制备复合改性沥青。采用三大指标、布氏粘度、离析实验、荧光显微镜等对其性能进行评价。结果表明,碳纳米管可以有效改善SBS改性沥青的高温稳定性、粘滞性,并且随着掺入碳纳米管量的增加,性能效果提升越好,但超过0.9%时改善效果趋于饱和;对改性沥青的温度敏感性和低温性能存在不利影响;碳纳米管的掺入限制了SBS颗粒与沥青分子之间的相对运动,使得SBS在沥青中的分散更均匀,改善了相容性与储存稳定性;综合考量碳纳米管/SBS复合改性沥青的各项性能,当其掺量为0.9%时,改性效果达到最佳。  相似文献   

19.
Acid oxidised multiwall carbon nanotubes (COOH-MWCNT) have been introduced as a hole injection buffer layer in an organic light emitting diodes (OLED). We show that the OLED with COOH-MWCNT as a buffer layer provides higher brightness with lower operating voltages. The addition of a COOH-MWCNT buffer layer has enabled a further increase in the brightness of our OLED devices operating in excess of 20,000 cd/m2 due to enhanced hole injection by several orders of magnitude. The increase in current injection and brightness does not alter the optical emission spectrum at different operating voltages in these devices. A model is proposed to explain this increase in current injection and brightness based on the modified electron energy band alignment.  相似文献   

20.
《应用陶瓷进展》2013,112(4):186-195
Abstract

Multiwalled carbon nanotube (CNT) films have been successfully fabricated by electrophoretic deposition (EPD) on stainless steel substrates. Electrophoretic deposition was performed using optimised aqueous suspensions under constant voltage conditions. Triton X-100 was used as a surfactant to disperse CNT bundles, and iodine was added as a particle charger. CNT/SiO2 composite coatings were prepared by electrophoretic co-deposition. Experimental results show that the CNTs were efficiently mixed with SiO2 nanoparticles to form a network structure. Layered CNT/SiO2 porous composites were obtained by sequential EPD experiments alternating the deposition of CNT and SiO2 nanoparticles. The structure of all films deposited was studied in detail by scanning electron microscopy. Possible applications of CNT and CNT/SiO2 films are as porous coatings in the biomedical field, thermal management devices, biomedical sensors and other functional applications where the properties of CNTs are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号