首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon nanotubes (CNTs) show great promise to improve composite electrical and thermal conductivity due to their exceptional high intrinsic conductance performance. In this research, long multi-walled carbon nanotubes (long-MWCNTs) and its thin sheet of entangled nanotubes were used to make composites to achieve higher electrical and thermal conductivity. Compared to short-MWCNT sheet/epoxy composites, at room temperature, long-MWCNT samples showed improved thermal conductivity up to 55 W/mK. The temperature dependence of thermal conductivity was in agreement with κ  Tn (n = 1.9–2.3) below 150 K and saturated around room temperature due to Umklapp scattering. Samples with the improved CNT degree of alignment by mechanically stretching can enhance the room temperature thermal conductivity to over 100 W/mK. However, functionalization of CNTs to improve the interfacial bonding resulted in damaging the CNT walls and decreasing the electrical and thermal conductivity of the composites.  相似文献   

2.
《Ceramics International》2017,43(2):2170-2173
HfB2-x vol%CNTs (x=0, 5, 10, and 15) composites are prepared by spark plasma sintering. The influence of CNTs content and sintering temperature on densification, microstructure and mechanical properties is studied. Compared with pure HfB2 ceramic, the sinterability of HfB2-CNTs composites is remarkably improved by the addition of CNTs. Appropriate addition of CNTs (10 vol%) and sintering temperature (1800 °C) can achieve the highest mechanical properties: the hardness, flexural strength and fracture toughness are measured to be 21.8±0.5 GPa, 894±60 MPa, and 7.8±0.2 MPa m1/2, respectively. This is contributed to the optimal combination of the relative density, grain size and the dispersion of CNTs. The crack deflection, CNTs debonding and pull-out are observed and supposed to exhaust more fracture energy during the fracture process.  相似文献   

3.
The effect of CNT orientation on electrical and mechanical properties is presented on the example of an ultra-high filler loaded multi-walled carbon nanotube (68 wt.% MWCNTs) epoxy-based nanocomposite. A novel manufacturing method based on hot-press infiltration through a semi-permeable membrane allows to obtain both, nanocomposites with aligned and randomly oriented CNTs (APNCs and RPNCs) over a broad filler loading range of ≈10–68 wt.%. APNCs are based on low-defected, mm-long aligned MWCNT arrays grown in chemical vapour deposition (CVD) process. Electrical conductivity and mechanical properties were measured parallel and perpendicular to the direction of CNTs. RPNCs are based on both, aligned mm-long MWCNTs and randomly oriented commercial μm-long and entangled MWCNTs (Baytube C150P, and exemplarily Arkema Graphistrength C100). The piezoresistive strain sensing capability of these high-wt.% APNCs and RPNCs had been investigated towards the influence of CNT orientations. For the highest CNT fraction of 68 wt.% of unidirectional aligned CNTs a Young’s modulus of E||  36 GPa and maximum electrical conductivity of σ||  37·104 S/m were achieved.  相似文献   

4.
A series of La-doped (10 at.%) SrTiO3 ceramics with grain size ranging from 6 μm to 24 nm was prepared from nanocrystalline powders using high-pressure field assisted sintering (HP-FAST). A progressive reduction of thermal conductivity κ with decreasing grain size was observed. At room temperature, κ of the ceramic with grain size of 24 nm (1.2 W m−1 K−1) is one order of magnitude lower than that of undoped single crystals. The strong suppression of κ can be ascribed to (i) the high concentration of lattice defects, (ii) the increasing contribution of grain boundaries to phonon scattering when the grain size is decreased to the nanoscale and (iii) a moderate amount (10–15 vol.%) of nanopores. These results demonstrate that nanostructuration can be a successful strategy to attain a considerable reduction of κ in heavily doped bulk oxide ceramics. The low electrical conductivity of the La:SrTiO3 nanoceramics represents a major obstacle for thermoelectric applications.  相似文献   

5.
《Ceramics International》2016,42(4):4984-4992
The nanocomposite was produced via phenolic resin infiltrating into a carbon nanotube (CNT) buckypaper preform containing B4C fillers and amorphous Si particles followed by an in-situ reaction between resin-derived carbon and Si to form SiC matrix. The buckypaper preform combined with the in-situ reaction avoided the phase segregation and increased significantly the volume fraction of CNTs. The nanocomposites prepared by this new process were dense with the open porosities less than 6%. A suitable CNT–SiC bonding was achieved by creating a B4C modified interphase layer between CNTs and SiC. The hardness increased from 2.83 to 8.58 GPa, and the indentation fracture toughness was estimated to increase from 2.80 to 9.96 MPa m1/2, respectively, by the reinforcing effect of B4C. These nanocomposites became much more electrically conductive with high loading level of CNTs. The in-plane electrical resistivity decreased from 124 to 74.4 μΩ m by introducing B4C fillers.  相似文献   

6.
In low earth orbit (LEO), components of space systems are exposed to damaging hypothermal atomic oxygen and thermal fatigue. Carbon nanotube (CNT) wires are candidate materials for different applications in space systems. Thirty-yarn CNT wire’s behavior was evaluated when exposed to hypothermal atomic oxygen and thermal fatigue. CNT wire specimens were exposed to a nominal fluence of hypothermal atomic oxygen of 2 × 1020 atoms/cm2. The erosion rate due to hypothermal collision between atomic oxygen and CNT wires was calculated to be 2.64 × 10−25 cm3/atom, which is comparable to highly ordered pyrolytic graphite. The tensile strength of CNT wire was not affected by this exposure, and a minor reduction of electrical conductivity (2.5%) was found. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy analysis showed erosion of surface layer with depleted carbon and increased oxygen. Thermal fatigue excursion of 5000 cycles from 70 to −50 °C at a rate of 55 °C/min showed no loss in tensile strength; however a large decrease in conductivity (18%) was seen. SEM analysis showed that the thermal fatigue created buckling of yarn and fracture of individual CNTs bundles. These reduced the effective area and electrical conductivity of CNT wire.  相似文献   

7.
Preparation, structure and properties of hydrothermally treated carbon nanotube/boehmite (CNT/γ-AlOOH) and densification with spark plasma sintering of Al2O3 and CNT/Al2O3 nanocomposites were investigated. Hydrothermal synthesis was employed to produce CNT/boehmite from an aluminum acetate (Al(OH)(C2H3O2)2) and multiwall-CNTs mixture (200 °C/2 h.). TEM observations revealed that the size of the cubic shape boehmite particles lies around 40 nm and the presence of the interaction between surface functionalized CNTs and boehmite particles acts to form ‘nanocomposite particles’. Al2O3 and CNT/Al2O3 compact bodies were formed by means of spark plasma sintering (SPS) at 1600 °C for 5 min using an applied pressure of 50MPa resulting in the formation of stable α-Al2O3 phase and CNT–alumina compacts with nearly full density. It was also found that CNTs tend to locate along the alumina grain boundaries and therefore inhibit the grain coarsening and cause inter-granular fracture mode. The DC conductivity measurements reveal that the DC conductivity of CNT/Al2O3 is 10?4 S/m which indicate that there is a 4 orders of magnitude increase in conductivity compared to monolithic Al2O3. The results of the microhardness tests indicate a slight increase in hardness for CNT/Al2O3 (28.35 GPa for Al2O3 and 28.57 GPa for CNT/Al2O3).  相似文献   

8.
We report a new method to modify electrical properties of carbon nanotubes (CNTs). Single-, double- and multi-wall CNTs were subjected to treatment with a polar interhalogen compound, i.e. iodine monochloride (ICl) for 8 h at room temperature or briefly at 350 °C to assess kinetics and thermodynamics of the reactions. The results showed a powerful p-doping, which enabled us to decrease electrical resistance of the material by more than 60% eventually reaching specific conductivity of 1.24 S m2 g−1. Functionalization of CNTs with halogen atoms resulted in evident changes to the material microstructure and composition. To illustrate viability of this technique for manufacturing highly conductive wires, we have produced an ICl-doped CNT-based USB cable. The tests unequivocally revealed that the cable could be successfully used for power or data transmission on the verge of USB 2.0 capabilities.  相似文献   

9.
Alumina–carbon nanotubes composites were studied with respect to obtain the homogeneous distribution of nanotubes within the alumina matrix. Disaggregation and uniform dispersion of carbon nanotubes in alumina matrix are crucial requirements for improvement fracture toughness and also electrical conductivity of these composites. New approach comprises functionalisation MWCNTs by acid treatment, stabilisation of alumina/MWCNT dispersion with subsequent freezing has been used, which resulted in formation of granulated homogenous mixture. The ceramic composites were prepared by hot pressing at 1550 °C using these mixtures. Microstructural analysis as well as electrical conductivity measurements has been used for observation of distribution of nanotubes within composites. Electrical conductivity, as an indicator of homogeneity of conductive network distribution, increases from 6 to 1140 S/m when compared the conventional process and approach presented in this work at the same volume fraction of MWCNTs 10 vol.%.  相似文献   

10.
We report mechanical, thermal, and electrical properties of novel sheet materials composed of multiwalled carbon nanotubes, drawn from a CNT array. At low loading there is some slippage of CNTs but at higher loading tensile strength σ0 = 7.9 MPa and Young’s modulus E = 310 MPa. The room-temperature thermal conductivity of the CNT sheet was 2.5 ± 0.5 W m?1 K?1, giving a thermal conductivity to density ratio of κ/ρ = 65 W m?1 K?1 g?1 cm3. The heat capacity shows 1D behavior for T > 40 K, and 2D or 3D behavior at lower temperatures. The room-temperature specific heat was 0.83 J g?1 K?1. The iV curves above 10 K have Ohmic behavior while the iV curve at T = 2 K is non-Ohmic, and a model to explain both ranges is presented. Negative magnetoresistance was found, increasing in magnitude with decreasing temperature (?15% at T = 2 K and B = 9 T). The tensile strength, Young’s modulus and electrical conductivity of the CNT sheet are low, in comparison with other CNT materials, likely due to defects. Thermal conductivity is dominantly phononic but interfacial resistance between MWCNTs prevents the thermal conductivity from being higher.  相似文献   

11.
Carbon nanotube–alumina (CNT–Al2O3) nanocomposites have been synthesized by direct growth of carbon nanotubes on alumina by chemical vapor deposition (CVD) and the as-grown nanocomposites were densified by spark plasma sintering (SPS). Surface morphology analysis shows that the CNTs and CNT bundles are very well distributed between the matrix grains creating a web of CNTs as a consequence of their in situ synthesis. Even after the SPS treatment, the CNTs in the composite material are still intact. Experimental result shows that the electrical conductivity of the composites increases with the CNT content and falls in the range of the conductivity of semiconductors. The nanocomposite with highest CNT content has electrical conductivity of 3336 S/m at near room temperature, which is about 13 orders of magnitude increase over that of pure alumina.  相似文献   

12.
Multi-walled carbon nanotubes (MWCNTs) are often reported as additives improving mechanical and functional properties of ceramic composites. However, despite tremendous efforts in the field in the past 20 years, the results are still inconclusive. This paper studies room temperature properties of the composites with polycrystalline alumina matrix reinforced with 0.5–2 vol.% MWCNTs (composites AC) and zirconia toughened alumina with 5 vol.% of yttria partially stabilised zirconia (3Y-PSZ) containing 0.5–2 vol.% of MWCNTs (composites AZC). Dense composites were prepared through wet mixing of the respective powders with functionalised MWCNTs, followed by freeze granulation, and hot-pressing of granulated powders. Room temperature bending strength, Young's modulus, indentation fracture toughness, thermal and electrical conductivity of the composites were studied, and related to their composition and microstructure. Slight increase of Young's modulus, indentation fracture toughness, bending strength, and thermal conductivity was observed at the MWCNTs contents ≤1 vol.%. At higher MWCNTs contents the properties were impaired by agglomeration of the MWCNTs. The DC electrical conductivity increased with increasing volume fraction of the MWCNTs.  相似文献   

13.
Defect-engineered carbon nanotubes (CNTs) were prepared by KOH activation and subsequent nitrogen doping. Controlled KOH activation of the CNTs enlarged the specific surface area to 988 m2 g−1, which is about 4.5 times greater than that of pristine CNTs. In addition, a hierarchical pore structure and a rough surface developed at high degrees of activation, which are advantageous features for fast ion diffusion. The subsequent nitrogen doping changed the band structure of the CNTs, resulting in improved electrical properties. Symmetric supercapacitors fabricated using these nitrogen-doped and activated CNTs (NA-CNTs) successfully worked across a wide potential range (0–3.5 V) and exhibited a high capacitance of 98 F g−1 at a current density of 1 A g−1. Furthermore, a low equivalent series resistance (2.2 Ω) was achieved owing to the tailored nanostructure and electrical properties of the electrode materials. Over the voltage range from 0 to 3.5 V, supercapacitors based on NA-CNTs exhibited a high specific energy of 59 Wh kg−1 and a specific power of 1750 W kg−1. In addition, a specific power of 52,500 W kg−1 with a 3-s charge/discharge rate was achieved with a specific energy of 26 Wh kg−1. Moreover, the supercapacitors showed stable performance over 10,000 charge/discharge cycles.  相似文献   

14.
Well-aligned, open-ended carbon nanotubes (CNTs), free of catalyst and other carbon products, were synthesized inside the pores of an anodic aluminium oxide (AO) template without using any metallic catalyst. The CNTs and the CNT/AO composites were characterized by scanning and transmission electron microscopy, thermogravimetric analysis, Raman spectroscopy and X-ray diffraction. Particular care was devoted to the reactor design, synthesis conditions, the catalytic role of the templating alumina surface and the preservation of the alumina structure. The transport properties (sorption, diffusion and permeability) to water vapor were evaluated for both the alumina template and the CNT/AO composite membrane. The measured effective electrical volume conductivity of the CNT/AO composite was found ranging from a few up to 10 kS/m, in line with the recent literature. The estimated averaged values of the CNTs-wall conductivity was around 50 kS/m.  相似文献   

15.
Boron carbide/graphene platelet (B4C/GPLs) composites have been prepared with a different weight percent of GPLs as sintering additive and reinforcing phase, hot pressed at 2100 °C in argon. The influence of the GPLs addition on fracture toughness (KIC) and electrical conductivity was investigated. Single Edge V-Notched Beam (SEVNB) method was used for fracture toughness measurements and the four-point Van der Pauw method for electrical conductivity measurements. With increasing amount of GPLs additives, the fracture toughness increased due to the activated toughening mechanisms in the form of crack deflection, crack bridging, crack branching and graphene sheet pull-out. The highest fracture toughness of 4.48 MPa.m1/2 was achieved at 10 wt.% of GPLs addition, which was ∼50% higher than the KIC value of the reference material. The electrical conductivity increased with GPLs addition and reached the maximum value at 8 wt.% of GPLs, 1.526 × 103 S/m in the perpendicular and 8.72 × 102 S/m in the parallel direction to the hot press direction, respectively.  相似文献   

16.
The main challenges for commercialization of a single-filler graphite (G) polymer-matrix composite as bipolar plates are its low electrical conductivity and flexural strength. The minimum requirements set by the US Department of Energy (DOE) are the electrical conductivity and flexural strength to be greater than 100 S/cm and 25 MPa, respectively. In this study, the electrical conductivity of a G/epoxy (EP) composite (single filler) is only 50 S/cm (in-plane conductivity) at 80 wt% G. However, flexural strength is greater than 25 MPa. Using carbon nanotubes (CNTs) as the second filler at a concentration of 5 wt% in a CNTs/G/EP nanocomposite resulted in the in-plane and through-plane electrical conductivity and flexural strength being 180 S/cm, 75 S/cm, and 45 MPa, respectively. The density of the CNTs/G/EP nanocomposite is also less than that of G/EP composite, which demonstrates that a total weight reduction is achievable.  相似文献   

17.
《Ceramics International》2017,43(7):5715-5722
In this study, we report the electrical conductivity and thermal properties of Al2O3-SiC-CNT hybrid nanocomposites processed via ball milling (BM) and spark plasma sintering (SPS). The initial powders and consolidated samples were characterized using transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM), respectively. A multifunction calibrator and a high-resolution digital multimeter were used to measure the electrical conductivity. The thermal properties were measured using a thermal constants analyser. The SiC and CNT-reinforced alumina hybrid nanocomposites exhibited a significant increase in their room-temperature electrical conductivity, which made them suitable for electrical discharge machining. The Al2O3-5SiC-2CNTs had a high electrical conductivity value of 8.85 S/m compared to a low value of 6.87×10−10 S/m for the monolithic alumina. The addition of SiC and CNTs to alumina decreased its room-temperature thermal properties. The increase in temperature resulted in a decrease in the thermal conductivity and thermal diffusivity but an increase in the specific heat of the monolithic alumina and the hybrid nanocomposites. These properties were correlated with the microstructure, and possible transport mechanisms were discussed.  相似文献   

18.
Dispersion-printing processes are essential for the fabrication of various devices using carbon nanotubes (CNTs). Insufficient dispersion results in CNT aggregates, while excessive dispersion results in the shortening of individual CNTs. To overcome this tradeoff, we propose here a repetitive dispersion–extraction process for CNTs. Long-duration ultrasonication (for 100 min) produced an aqueous dispersion of CNTs with sodium dodecylbenzene sulfonate with a high yield of 64%, but with short CNT lengths (a few μm), and poor conductivity in the printed films (∼450 S cm−1). Short-duration ultrasonication (for 3 min) yielded a CNT dispersion with a very small yield of 2.4%, but with long CNTs (up to 20–40 μm), and improved conductivity in the printed films (2200 S cm−1). The remaining sediment was used for the next cycle after the addition of the surfactant solution. 90% of the CNT aggregates were converted into conductive CNT films within 13 cycles (i.e., within 39 min), demonstrating the improved conductivity and reduced energy/time requirements for ultrasonication. CNT lines with conductivities of 1400–2300 S cm−1 without doping and sub-100 μm width, and uniform CNT films with 80% optical transmittance and 50 Ω/sq sheet resistance with nitric acid doping were obtained on polyethylene terephthalate films.  相似文献   

19.
Carbon nanotube–iron–mullite nanocomposite powders were prepared by a direct method involving a reduction in H2–CH4 and without any mechanical mixing step. The carbon nanotubes are mostly double- and few-walled (3–6 walls). Some carbon nanofibers are also observed. The materials were consolidated by spark plasma sintering. Their electrical conductivity is 2.4 S/cm whereas pure mullite is insulating. There is no increase in fracture strength, but the SENB toughness is twice than the one for unreinforced mullite (3.3 vs. 1.6 MPa m1/2). The mechanisms of carbon nanotube bundle pullout and large-scale crack-bridging have been evidenced.  相似文献   

20.
A high-yield bamboo like multiwalled carbon nanotubes (CNTs) were successfully synthesized on copper substituted alumina nanoparticles by thermal chemical vapor deposition (CVD) technique under atmospheric pressure. The obtained products were characterized by various techniques like FESEM with EDX, HRTEM and Raman spectroscopy, which reveals the formation of CNTs and are of bamboo shaped (stacking arrangement) multiwalled type with graphene layers having a diameter between 4 and 9 nm. The appearance of two peaks at 1597 cm 1 and 1302 cm 1 in Raman spectra are noticed as G-band and D-band for graphitic nature and defects due to bending & curvature of bamboo like carbon nanotubes (b-CNTs), respectively. The influence of reaction parameters such as time, temperature and flow rate was also studied to increase the carbon yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号