首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To elucidate the effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel, a metallographic examination, potentiodynamic and potentiostatic polarization tests, a SEM-EDS and a SAM analysis of inclusion, austenite phase and ferrite phase were conducted. The addition of rare earth metals to the base alloy led to the formation of (Mn, Cr, Si, Al, Ce) oxides and (Mn, Cr, Si, Ce) oxides, which improved the resistance to pitting corrosion and caused a decrease in the preferential interface areas for the initiation of the pitting corrosion.  相似文献   

2.
To elucidate the effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of alloys, potentiodynamic and potentiostatic polarization tests, a SEM-EDS analysis of inclusions, and thermodynamic calculations of the formation of inclusions were conducted. The addition of copper to the base alloy increased the number and area of numerous (Mn, Cr, (Al), (Fe)) oxides and oxy-sulfides due to an increase in the activity of chromium and resulted in decreased pitting resistance. The thermodynamic prediction of the formation of inclusions was in good agreement with the experimental results.  相似文献   

3.
A new high Mn-Ni free (duplex stainless steel) DSS containing 18Cr-6Mn-1Mo-0.2N has been developed by examining the effects of manganese on the corrosion and mechanical properties of high Mn SSs containing 18Cr-4 ∼ 11Mn-0 ∼ 2Ni-0 ∼ 1Mo-0.2N. The alloy with 45% ferrite is found to be an optimum alloy with much higher mechanical strength and similar corrosion resistance compared with those of standard SS304. In addition, the alloy was free of precipitation of sigma phase and Cr-nitride when exposed to high temperatures due primarily to relatively low contents of Cr, N and Mo. With an increase in Mn content, the resistance to pitting and metastable pitting corrosion of high Mn DSS decreased since the number of (Mn, Cr) oxides, acting as preferential sites of pitting, increased with the Mn content.  相似文献   

4.
Austenitic stainless steels with up to 6.1 wt.% Mo were nitrided at 425 °C and examined in 0.1 M Na2SO4 without and with chlorides at pH 3.0 and 6.5. Nitrided steels exhibited an increased resistance to pitting, but at pH 3.0 they had a decreased resistance to general corrosion. After corrosion at pH 3.0 surface films contained chromium nitrides and oxides of Mo, Cr and Fe. It is proposed that the improved pitting resistance of nitrided steels is associated with the initially accelerated dissolution which leads to the accumulation of corrosion resistant CrN and of oxidised steel components.  相似文献   

5.
6.
李涛  曹阁  刘毅  赵慧颖 《表面技术》2017,46(10):29-34
目的提高7A04铝合金的耐腐蚀性能。方法采用周期浸润腐蚀试验模拟海洋大气环境,研究了不同稀土Ce含量的7A04铝合金的腐蚀行为及规律。通过金相显微镜和扫描电子显微镜,观察了不同试样的组织和夹杂物形貌。采用失重法和电化学阻抗技术,分析了试样的腐蚀动力学规律及电化学行为特性。结果在Ce质量分数分别为0%、0.39%和0.81%的7A04铝合金中,稀土Ce的加入量为0.39%时,其晶粒最细小,第二相与夹杂最少且分布最均匀,合金的基体组织得到了改善。稀土7A04铝合金的腐蚀失重明显低于不含稀土Ce的7A04铝合金,且锈层电阻升高,其中含0.39%稀土Ce的7A04铝合金的锈层电阻最高。结论三种7A04铝合金均发生了明显的局部腐蚀,主要为点蚀。稀土Ce的加入,改变了非稀土铝合金中的T相和S相,生成了新的细小的块状金属间化合物,改善了组织的均匀性,提高了其腐蚀锈层电阻,增加了锈层对基体的保护能力,使铝合金耐海洋大气腐蚀性能提高。在三种稀土Ce含量的铝合金中,含0.39%稀土Ce的7A04铝合金的耐蚀性最佳。  相似文献   

7.
The stress corrosion cracking (SCC) behavior of Fe18Cr10Mn1Ni(0.3–0.8)N alloys was investigated in aqueous NaCl environment by using slow strain rate test method, and the results were compared to those of Ni-free counterparts. The addition of N tended to improve the SCC resistance of Fe18Cr10Mn- and Fe18Cr10Mn1Ni-based alloys. The alloying Ni magnified the beneficial effect of N on the SCC susceptibility and, eventually, the Fe18Cr10Mn0.8N alloy was immune to SCC in 2 M NaCl solution at 50 °C. The SCC behavior of the present alloys was found to be closely related to the repassivation tendency and the resistance to pitting corrosion.  相似文献   

8.
Fe-rich amorphous alloys with minor-addition of Cr and/or Nb were examined with the aim of developing Fe-based amorphous alloys exhibiting simultaneously high saturation magnetization above 1.5 T and good corrosion properties. Fe82Cr2B8P4Si3C and Fe82NbB9P4Si3C amorphous alloys were found to exhibit high saturation magnetizations of 1.49 T and 1.57 T, respectively, and rather good corrosion resistance in 3.5 mass% NaCl solution at 298 K. The minor-addition of Cr or Nb enables the formation of amorphous alloy particles without harmful oxide layer by water atomization process which makes these alloys suitable for applications as soft magnetic core materials. The addition of 1 at% Nb improved the corrosion resistance through the increase in Ecorr value, which makes easy to reach passive state, and the suppression of pitting corrosion. Besides, it has been proved that the simultaneous addition of Nb and Cr has an effect on forming protective passive film.  相似文献   

9.
在研究2A50及SiCp/2A50复合材料力学性能的基础上,采用失重方法和电化学方法研究了2A50及SiCp/2A50复合材料在NaCl溶液中腐蚀行为和腐蚀机理,研究了不同尺寸、不同含量的增强颗粒SiCp对复合材料力学性能和腐蚀行为影响的变化规律。研究结果表明:当增强颗粒SiCp尺寸一定时,随着增强颗粒含量的增加,复合材料的强度增加,延伸率降低,而复合材料的腐蚀速率增加;当增强颗粒SiCp含量一定时,随着增强颗粒尺寸的增加,复合材料的强度降低,而延伸率则降幅较小,复合材料的腐蚀速率增加;复合材料中增强颗粒SiCp含量的变化并没有影响材料的腐蚀电位的变化,且与基体合金的腐蚀电位变化幅度较小;合金中的第二相与增强颗粒SiCp在复试过程中作为腐蚀阴极相,共同增加了合金的腐蚀速率;增强颗粒SiCp的加入降低了合金的耐蚀性能,且所研究的5种复合材料的腐蚀速率均大于基体合金的腐蚀速率。  相似文献   

10.
In this study, the microstructure and corrosion behaviour of rheocast and gravity-cast A356 aluminium alloys were examined and compared. Scanning Kelvin probe force microscopy (SKPFM) results proved that large potential differences between iron-containing intermetallics and the α-Al matrix were responsible for the initiation of the attack at the intermetallics/α-Al interfaces. For longer immersion times, corrosion attack proceeded through the eutectic areas. Semisolid processing refined the eutectic silicon and iron-intermetallics and reduced the potential difference between secondary phases and the matrix. This resulted in improved pitting corrosion resistance of the rheocast A356 aluminium alloy.  相似文献   

11.
Surface melting of a magnesium alloy, ZE41 (4%-Zn, 1%-RE) was performed to achieve electrochemical homogeneity at the surface by microstructure refinement. Large secondary precipitates are particularly known to cause severe pitting in magnesium alloys. The corrosion resistance of the laser treated and untreated alloy was investigated by potentiodynamic polarisation and electrochemical impedance spectroscopy. Contrary to the reported behaviour of other magnesium alloys (such as AZ series alloys), laser surface melting did not significantly improve the corrosion resistance of ZE41. This observation is attributed to the absence of beneficial alloying elements such as Al in ZE41 alloy.  相似文献   

12.
M. Qian  D. Li  S.L. Gong 《Corrosion Science》2010,52(10):3554-331
Laser remelting was applied to plasma-sprayed Al-Si coating on magnesium alloy AZ91D to improve corrosion performance. Both salt spray testing and potentiodynamic polarization measurement in 3.5% NaCl solution indicated that laser-remelted Al-Si coating acquired better corrosion resistance than AZ91D and plasma-sprayed Al-Si coating. The decreasing order of the corrosion rates are AZ91D base metal, sprayed Al-Si coating and laser-remelted Al-Si coating. The fine Al-Si eutectic matrix in the laser-remelted microstructure contributed to the improved corrosion performance relative to the AZ91D and the plasma-sprayed coating. The predominant corrosion mechanisms in AZ91D, plasma-sprayed coating and laser-remelted coating are intra-granular corrosion, crevice corrosion and the combined pitting and galvanic corrosion, respectively.  相似文献   

13.
The corrosion behaviour of wrought Mg-Zn-Y-Zr alloy was investigated by corrosion morphology observation and electrochemical measurement. The results indicate that the corrosion process can be divided into three stages, corresponding to three types of corrosion features. At the initial stage, corrosion occurred surrounding the second phases, which was driven by galvanic couple effect; at the middle stage, filiform corrosion was found in the central regions of α Mg matrix; at the final stage, pitting corrosion presented around the second phases. The second phases have a great effect on the corrosion process of Mg-Zn-Y-Zr alloy.  相似文献   

14.
The corrosion resistance of partially devitrified metallic glasses is a critical concern for the viability of the glasses in many technological applications. Although partial devitrification is detrimental to the corrosion resistance of some metallic glasses, both the pitting and alkaline corrosion behavior of partially nanocrystalline Al90Fe5Gd5 is similar to that of its amorphous precursor. This is in spite of the fact that the microstructure of the amorphous-nanocrystalline alloy is effectively a composite consisting of f.c.c. Al crystals embedded in an amorphous matrix. Here the pitting corrosion and alkaline dissolution of the amorphous-nanocrystalline alloy is compared to that of its fully amorphous precursor, pure polycrystalline Al, and to a micrometer scale composite consisting of electrically connected pure Al wires and amorphous ribbons.  相似文献   

15.
Cr- and Al-modified alloy steels using J55 carbon steel as base alloy were produced by remelting in a vacuum. Their corrosion resistance was estimated by open circuit potential, electrochemical polarisation measurements and immersion tests in a 3.5 wt.% NaCl solution. The modified alloy steels exhibit higher corrosion resistance with a more positive open circuit potential, lower corrosion current density and higher impedance than J55 steel. The immersion tests showed that the new alloy steels have lower corrosion rates and smaller pitting depth than J55 steel and a low-Cr steel.  相似文献   

16.
To clarify the correlation of nanoscale heterogeneity with corrosion in Al-based metallic glasses, three model alloys with a single nanoscale α-Al, Al3Ni or Al11Ce3 phase embedded in amorphous Al-Ni-Ce alloy matrix were obtained directly by melt quenching. The results indicated that the high pitting corrosion resistance of AM alloys was not deteriorated by nanocrystalline α-Al precipitation; whereas the pitting potential was slightly decreased and considerably reduced relative to their amorphous state due to the precipitation of nanocrystalline Al3Ni or Al11Ce3 respectively. Such a pitting sensitivity of different types of heterogeneities attributes to the nano-scale pit initiation events.  相似文献   

17.
The present investigation was undertaken to analyze the effects of isothermal ageing treatments, carried out between 700 and 900 °C for a variety of times up to two weeks and followed by water quenching, on the microstructure and on the localized corrosion resistance of a superduplex stainless steel, SAF 2507.The quantitative metallography coupled with X-ray diffraction techniques was adopted to follow the microstructural evolution, together with SEM microscopy.Electrochemical potentiodynamic tests, as cyclic polarization curves recorded in sodium chloride solutions, together with weight loss measurements were employed to evaluate the susceptibility of the aged specimens to pitting corrosion.The influence of the transformation of ferrite into secondary austenite and sigma phase and of other microstructural variations, as chromium nitrides precipitation, on the stability of the passive film is shown. The susceptibility of the aged alloy to pitting corrosion phenomena, is related to sigma phase precipitation in association to the secondary austenite formation, which lead to a noticeable Cr depletion at grain boundaries.  相似文献   

18.
Fe-based soft-magnetic metallic glasses (MGs) of Fe80−xCrxP9C9B2 (x = 0, 2, 5, 8 and 16 at.%) with high glass-forming ability (GFA), good soft-magnetic properties and high corrosion resistance are fabricated. With the addition of Cr to FePC-based alloys, the GFA and saturation magnetization (Ms) slightly decrease while the corrosion resistance effectively increases. The Fe–Cr–P–C–B BMGs exhibit good GFA and fully glassy rods can be produced up to 1.8 and 1.5 mm in diameter for the 2 and 5 at.% Cr added alloys, respectively. The alloys with 2 and 5 at.% Cr addition also show good soft-magnetic properties featured by high Ms of 1.16 and 1.04 T, low coercivity of 2.7 and 2.2 A/m, respectively. Besides, the corrosion behavior of the alloys was studied by immersion tests and potentiodynamic polarization measurements. It was found that the addition of Cr efficiently enhances the corrosion resistance of Fe–Cr–P–C–B alloys and the glassy alloy with 5 at.% Cr addition exhibits better corrosion resistance in comparison with the stainless steel SUS304 in 3 mass% NaCl solution. The combination of large GFA, good soft-magnetic properties, high corrosion resistance as well as low cost makes the Fe–Cr–P–C–B alloys as promising soft-magnetic and anti-corrosive materials for industrial applications.  相似文献   

19.
To elucidate the effects of sulfur addition on pitting corrosion and machinability behavior of alloys containing rare earth metals, a potentiostatic polarization test, a critical pitting temperature test, a SEM-EDS analysis of inclusions, and a tool life test were conducted. As sulfur content increased, the resistance to pitting corrosion decreased due to the formation of numerous manganese sulfides deteriorating the corrosion resistance and an increase in the preferential interface areas for the initiation of the pitting corrosion. With an increase in sulfur content, the tool life increased due to the lubricating films of manganese sulfides adhering to tool surface.  相似文献   

20.
The research explored ways of improving corrosion behaviour of AZ91D magnesium alloy through heat treatment for degradable biocompatible implant application. Corrosion resistance of heat-treated samples is studied in simulated body fluid at 37 °C using immersion and electrochemical testing. Heat treatment significantly affected microgalvanic corrosion behaviour between cathodic β-Mg17Al12 phase and anodic α-Mg matrix. In T4 microstructure, dissolution of the β-Mg17Al12 phase decreased the cathode-to-anode area ratio, leading to accelerated corrosion of α-Mg matrix. Fine β-Mg17Al12 precipitates in T6 microstructure facilitated intergranular corrosion and pitting, but the rate of corrosion was less than those of as-cast and T4 microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号