首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
This investigation focuses on the feasibility of heterogeneous welded joints between DP600 steel and aluminium 6082. The process adopted used a power laser in two modes: keyhole welding and laser-induced reactive wetting. All the results of the study show that the use of laser welding of galvanised sheets, in the keyhole mode, can achieve a joint shear strength of 140 MPa by optimising the process parameters and controlling the penetration, which must be limited to 600 μm. Another key factor with this welding method is control of the inter-sheet gap, which was achieved by using a clamping system that ensured a rigid joint while maintaining a constant gap sufficient to allow the escape of zinc vapour. This approach enabled an increase in shear strengths of 200 MPa to be obtained and the zinc acted as a beneficial factor to the welding process. With the laser-induced reactive wetting mode, the joint between galvanised sheets was more brittle because of the formation of a non-uniform reaction layer. With this mode, the presence of zinc is a factor that limits the growth of the reaction layer and, at the same time, leads to a mechanical deterioration of the joint; test results indicate that mechanical strength was limited to about 80 MPa.  相似文献   

2.
The increasing use of aluminium alloys in transportation industry, such as railways, shipbuilding and aeronautics, promotes the development of more efficient and reliable welding processes. Friction stir welding (FSW) is a prominent solid-state joining technology that arose as a possible reliable welding solution. Optimized process parameters are not regularly used in previous studies found in the literature, in particular T-joints, which difficult the process industrial application. This study is focused on the optimization of friction stir welded T-joints using the Taguchi method. Mechanical tests of 27 different welded joints were carried out, and results were analysed using ANOVA, mean effect and response surface methodology (RSM). The tool rotational speed was verified to be the most influent factor in the joint mechanical properties, and is strongly dependent on the shoulder/probe diameters ratio. It was also shown that using 1000 rpm, 3.90 mm of probe depth and shoulder/probe diameters ratio of 2.5 (shoulder diameter of 15 mm) it may be achieved improved joint strength. For the optimized parameters it was verified that the welding speed does not have a significant influence. Equations to predict the joints mechanical properties were also derived through multiple regression.  相似文献   

3.
5 mm-Thick dissimilar AA2024-T3 and AA7075-T6 aluminum alloy sheets were friction stir lap welded in two joint combinations, i.e., (top) 2024/7075 (bottom) and 7075/2024. The influences of process conditions (welding speed and joint combination) on defects (hook and voids) features and mechanical properties of joints were investigated in detail. It was found that the hook deflects largely upwards into the stir zone (SZ) at lower welding speeds (50, 150 mm/min) in both combinations. The process conditions significantly affect the hook geometry which in return affects the lap shear strength. In all 2024/7075 joints, voids appear and the joints fracture from the tip of hook on AS along the SZ/TMAZ (thermomechanically affected zone) interface in lap shear test (tensile fracture mode). In 7075/2024 joints, the hook on RS horizontally extends a large distance into the bottom stir zone at higher welding speeds (225, 300 mm/min). The joints fracture in three modes: shear fracture along the lap interfaces, tensile fracture and the mix fracture of both. In both joint combinations, the lap shear strength generally increases with the increase of welding speed. 7075/2024 Joints show higher failure load than 2024/7075 joints at lower welding speeds while the opposite result appears at higher welding speeds.  相似文献   

4.
Experimental investigations on butt welding of magnesium alloy to steel by hybrid laser–tungsten inert gas (TIG) welding with Cu–Zn alloy interlayer are carried out. The results show that the gradient thermal distribution of hybrid laser–TIG welding, controlled by offset adjustment, has a noticeable effect on mechanical properties and microstructure of the joints. Particularly, at the offset of 0.2 mm, defect-free joints are obtained, and the tensile strength could attain a maximum value of 203 MPa. Moreover, the fracture of the joint with the 0.2 mm offset happens in the weld seam of Mg alloy instead of the Mg/Fe interface. Owning to the addition of the Cu–Zn alloy interlayer, a metallurgical bonding between Mg alloy and steel is achieved based on the formation of intermetallic compounds of CuMgZn and solid solutions of Cu and Al in Fe. Meanwhile, the same element distribution tendency of Fe and Al indicates the intimate interaction between Fe and Al in current experimental conditions.  相似文献   

5.
3 mm Pure titanium TA2 was joined to 3 mm pure copper T2 by Cold Metal Transfer (CMT) welding–brazing process in the form of butt joint with a 1.2 mm diameter ERCuNiAl copper wire. The welding–brazing joint between Ti and Cu base metals is composed of Cu–Cu welding joint and Cu–Ti brazing joint. Cu–Cu welding joint can be formed between the Cu weld metal and the Cu groove surface, and the Cu–Ti brazing interface can be formed between Cu weld metal and Ti groove surface. The microstructure and the intermetallic compounds distribution were observed and analyzed in details. Interfacial reaction layers of brazing joint were composed of Ti2Cu, TiCu and AlCu2Ti. Furthermore, crystallization behavior of welding joint and bonding mechanism of brazing interfacial reaction were also discussed. The effects of wire feed speed and groove angle on the joint features and mechanical properties of the joints were investigated. Three different fracture modes were observed: at the Cu interface, the Ti interface, and the Cu heat affected zone (HAZ). The joints fractured at the Cu HAZ had higher tensile load than the others. The lower tensile load fractured at the Cu interface or Ti interface was attributed to the weaker bonding degree at the Cu interface or Ti interface.  相似文献   

6.
A novel resistance spot welding method of dissimilar materials of 6008-T66 aluminium alloy and H220YD galvanised high strength steel was presented, and the morphology of welding electrodes was designed optimally. Macrostructure, microstructure and mechanical property of the welded joints obtained with optimised electrodes were studied. Numerical simulation of current density distribution and temperature field during welding was also performed. The optimised electrodes were a planar circular tip electrode with tip diameter of 10 mm on the steel side and a spherical tip electrode with spherical diameter of 70 mm on the aluminium alloy side. The welded joint obtained with optimised electrodes could be regarded as a special welded-brazed joint, and an intermetallic compound layer composed of Fe2Al5 and Fe4Al13 with maximum thickness of about 4.0 μm was formed at the aluminium/steel interface in the welded joint. Tensile shear load up to 5.4 kN was achieved for the welded joint obtained with optimised electrodes. Current density distribution during welding with optimised electrodes was more homogeneous than that with F type electrodes. Furthermore, interfacial temperature in the welded joint during welding with optimised electrodes (about 915 °C) was lower than that with F type electrodes (about 985 °C).  相似文献   

7.
7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distribution, microstructure evolution and mechanical properties of joints along the thickness direction were investigated, and digital image correlation (DIC) was utilized to evaluate quantitatively the deformation of different zones during tensile tests. The results indicated that heat-affected zone (HAZ), the local softening region, was responsible for the early plastic deformation and also the fracture location for SS-FSW samples, while a rapid fracture was observed in weld nugget zone (WNZ) before yield behavior for all BB-FSW specimens. The ultimate tensile strength (UTS) of SS-FSW joints presented the highest value of 410 MPa, 82% of the base material, at a rotational speed of 300 rpm and welding speed of 60 mm/min, much higher than that of BB-FSW joints, with a joint efficiency of only 47%. This should be attributed to the Lazy S defect produced by a larger extent of heat input during the BB-FSW process. The whole joint exhibited a much higher elongation than the slices. Scanning electron microscopic (SEM) analysis of the fracture morphologies showed that joints failed through ductile fracture for SS-FSW and brittle fracture for BB-FSW.  相似文献   

8.
In this work, the feasibility of friction spot welding (FSpW) of a commercial poly(methyl methacrylate) (PMMA) GS grade and a PMMA 6 N/2 wt% silica (SiO2) nanocomposite was investigated. Single-lap joints welded at rotational speeds of 1000, 2000 and 3000 rpm were produced. The analysis of the joint microstructure and material flow pattern indicated that joints could be produced using all of the tested welding conditions. However, the joint produced at 1000 rpm displayed sharp weld lines (weak links), indicating insufficient heat input, while the welds produced at 3000 rpm displayed excessive plastic deformation (bulging of the bottom plate), volumetric defects and a lack of material mixing in the welded area, associated with higher heat input. The weld produced at a rotational speed of 2000 rpm resulted in improved material mixing, which was indicated by the absence of weld lines and volumetric defects due to the more correct heat input. This welding condition was selected for further mechanical testing. Lap shear testing of PMMA GS/PMMA 6 N/2 wt% SiO2 nanocomposite single lap joints welded at 2000 rpm resulted in an average ultimate lap shear strength of 3.9 ± 0.05 MPa. These weld strength values are equal to or better than those obtained using state-of-the-art welding techniques for PMMA materials, thereby demonstrating the potential of friction spot welding for thermoplastic nanocomposites.  相似文献   

9.
Dissimilar materials of H220YD galvanised high strength steel and 6008-T66 aluminium alloy were welded by means of median frequency direct current resistance spot welding with employment of 4047 AlSi12 interlayer. Effects of interlayer thickness on microstructure and mechanical property of the welded joints were studied. The welded joint with interlayer employed could be recognised as a brazed joint. The nugget diameter had a decreased tendency with increasing thickness of interlayer under optimised welding parameters. An intermetallic compound layer composed of Fe2(Al,Si)5 and Fe4(Al,Si)13 was formed at the interfacial zone in the welded joint, the thickness and morphology of which varying with the increase of interlayer thickness. Reaction diffusion at the steel/aluminium interface was inhibited by introduction of silicon atoms, which restricted growth of Fe2(Al,Si)5. Tensile shear load of welded joints experienced an increased tendency with increasing interlayer thickness from 100 to 300 μm, and the maximum tensile shear load of 6.2 kN was obtained with interlayer thickness of 300 μm, the fractured welded joint of which exhibiting a nugget pullout failure mode.  相似文献   

10.
Ti–22Al–27Nb alloys were welded using the laser beam welding process. The microstructure characterization and the tensile properties of the laser beam welded joints were investigated. The experimental results showed that a well-quality joint could be obtained using laser beam welding method. The fusion zone of the welded joint was composed of B2 phase. The tensile strength of the joints at room temperature was basically comparable to that of the base metal and the tensile ductility of the joints achieved 56% of the base metal. The average tensile strength of the welded joints at 650 °C was tested to be about 733 MPa, with the elongation of 2.93%.  相似文献   

11.
Stationary shoulder friction stir welding (SSFSW) butt welded joints were fabricated successfully for AA6061-T6 sheets with 5.0 mm thickness. The welding experiments were performed using 750–1500 rpm tool rotation speeds and 100–300 mm/min welding speeds. The effects of welding parameters on microstructure and mechanical properties for the obtained welds were discussed and analyzed in detail. It is verified that the defect-free SSFSW welds with fine and smooth surface were obtained for all the selected welding parameters, and the weld transverse sections are obviously different from that of conventional FSW joint. The SSFSW nugget zone (NZ) has “bowl-like” shapes with fairly narrow thermal mechanically affected zone (TMAZ) and heat affected zone (HAZ) and the microstructures of weld region are rather symmetrical and homogeneous. The 750–1500 rpm rotation speeds apparently increase the widths of NZ, TMAZ and HAZ, while the influences of 100–300 mm/min welding speeds on their widths are weak. The softening regions with the average hardness equivalent 60% of the base metal are produced on both advancing side and retreating side. The tensile properties of AA6061-T6 SSFSW joints are almost unaffected by the 750–1500 rpm rotation speeds for given 100 mm/min, while the changing of welding speed from 100–300 mm/min for given 1500 rpm obviously increased the tensile strength of the joint and the maximum value for welding parameter 1500 rpm and 300 mm/min reached 77.3% of the base metal strength. The tensile fracture sites always locate in HAZ either on the advancing side or retreating side of the joints.  相似文献   

12.
The microstructures and mechanical properties of friction stir welded Inconel 600 and SS 400 lap joints were evaluated in this study. Friction stir welding was carried out at a tool rotation speed of 200 rpm and a welding speed of 100 mm/min. Application of friction stir welding was notably effective in reducing the grain size of the stir zone, as a result, the average grain size of Inconel 600 was reduced from 20 μm in the base material to 8.5 μm in the stir zone. The joint interface between Inconel 600 and SS 400 was soundly welded without voids and cracks, and MC carbides with a size of 50 nm were partially formed in the region of the lap joint interface in Inconel 600. In addition, a hook from SS 400 was formed on the advancing side of the Inconel 600 alloy, which directly affected an increase in the peel strength of the weld. In this study, we systematically discussed the effect of friction stir welding on the evolution of the microstructures and mechanical properties of friction stir lap jointed Inconel 600 and SS 400.  相似文献   

13.
The joining of ferritic stainless steels and magnesium alloys is light and economic for weight reduction of automobiles. Unlike previous conventional welding method, a novel TIG–MIG hybrid welding is applied for the joint successfully in this study. The melted Mg weld metal wets the ferritic stainless steels surface to form a brazed Mg–Cu to steel connection when the interlayer thickness is 0.02 mm. When the interlayer thickness is 0.1 mm, the intermetallic compounds transition layer determined the tensile-shear strength of joints. Intermetallic compounds transition layer has been found in the 0.1 mm thick interlayer joints and no particle has been found in the 0.02 mm thick interlayer joints. Based on the analysis of microstructure and properties, joining and strengthen mechanisms of the joint were discovered. As the thickness of the Cu interlayer increases, the joining mechanism changed. The joining and strengthen mechanisms are mainly determined by the thickness of the interlayer. The tensile-shear strength of 0.1 mm thickness Cu interlayer joints is improved by 47% compared to 0.02 mm Cu.  相似文献   

14.
Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6 with 2 mm thickness was conducted by offsetting probe edge into the titanium alloy at rotation speed of 750 rpm and 1000 rpm and welding speed of 120 mm/min. The effect of probe offset distance on the interfacial microstructure and mechanical properties of the butt joint was investigated. When the probe offset distance is not sufficient, the two alloys cannot be completely joined together, i.e. there exists no bonding or kissing bonding at the root part of joint interface. However, when the probe offset distance is too large, a great amount of intermetallic compounds are formed at the joint interface and its adjacency, leading to fracturing roughly along the joint interface during a tensile test. In a proper range of probe offset distance, sound dissimilar butt joints are produced, which have comparatively high tensile strength and fracture in heat affected zone of the aluminum alloy during a tensile test.  相似文献   

15.
In this study, the effects of main welding parameters(rotation speed(ω) and welding speed(v)) on the microstructure, micro-hardness distribution and tensile properties of friction stir welded(FSW)2195-T8 Al-Li alloy were investigated. The effects of T6 post-treatments at different solution and aging conditions on the mechanical properties and microstructure characteristics of the FSW joints were also investigated. The results show that with increasing and v, both strength and elongation of the joints increase first, and then decrease with further increase of and v. All the joints under varied welding parameters show significant strength loss, and the strength reaches only 65% of the base metal. The effect of T6 post-heat treatment on the mechanical properties of the joints depends on the solution and aging conditions. Two heat treatment processes(480℃× 0.5 h quenching + 180℃× 12 h,520℃× 0.5 h quenching + 180℃× 12 h aging) are found to increase the joint strength. Furthermore,low temperature quenching(480℃) is more beneficial to the joint strength. The joint strength can reach 85% of the base metal. Whereas both low temperature aging(140℃× 56 h) and stepped aging(100℃× 12 h + 180℃× 3 h) processes decrease the joint strength. After heat treatment all the joints show decreased ductility due to the obvious grain coarsening in the nugget zone(NZ) and thermo-mechanically affected zone(TMAZ).  相似文献   

16.
Dissimilar metals of AA6013 aluminum alloy and Q235 low-carbon steel of 2.5 mm thickness were butt joined using a 10 kW fiber laser welding system with ER4043 filler metal. The study indicates that it is feasible to join aluminum alloy to steel by butt joints when zinc layer was hot-dip galvanized at the steel’s groove face in advance, and better weld appearance can be obtained at appropriate welding parameters. The joints had dual characteristics of a welding joint on the aluminum side and a brazing joint on the steel side. The smooth Fe2Al5 layer adjacent to the steel matrix and the serrated-shape FeAl3 layer close to the weld metal were formed at the brazing interface. The overall thickness of Fe–Al intermetallic compounds layers produced in this experiment were varied from 1.8 μm to 6.2 μm at various welding parameters with laser power of 2.85–3.05 kW and wire feed speed of 5–7 m/min. The Al/steel butt joints were failed at the brazing interface during the tensile test and reached the maximum tensile strength of 120 MPa.  相似文献   

17.
Laser welding of TiNi shape memory alloy wire to stainless steel wire using Ni interlayer was investigated. The results indicated that the Ni interlayer thickness had great effects on the chemical composition, microstructure, gas-pore susceptibility and mechanical properties of laser-welded joints. With an increase of Ni interlayer thickness, the weld Ni content increased and the joint properties increased due to decreasing brittle intermetallic compounds (TiFe2 and TiCr2). The joint fracture occurred in the fusion zone with a brittle intermetallic compound layer. The tensile strength and elongation of the joints reached the maximum values (372 MPa and 4.4%) when weld Ni content was 47.25 wt.%. Further increasing weld Ni content resulted in decreasing the joint properties because of forming more TiNi3 phase, gas-pores and shrinkage cavities in the weld metals. It is necessary to select suitable Ni interlayer thickness (weld composition) for improving the mechanical properties of laser-welded joints.  相似文献   

18.
This paper describes the effect of the friction welding condition on the joining phenomena and the tensile strength of friction welded joint between pure titanium (P-Ti) and low carbon steel (LCS). The adjacent region of the weld interface at the P-Ti side was intensely upsetting with accompanied large deformation of itself when the joint had sparkle at both applied friction pressures of 30 and 90 MPa, although that of the LCS side was hardly upset. The temperature of the whole weld interface at a friction pressure of 30 MPa reached to 1150 K or over at a friction time of 3.0 s or longer. However, the half radius and centreline portion temperatures of the weld interface at a friction pressure of 90 MPa was not reached to 1150 K, although the periphery portion of that was reached to its temperature. The central portion of the weld interface at a friction pressure of 90 MPa was deformed to a convex shape from the viewpoint of the P-Ti side, although that of 30 MPa remained almost flat after when the friction torque reached the initial peak. When the joint was made at a friction pressure of 30 MPa, a friction time of 3.0 s or longer, and a forge pressure of 270 MPa or higher, it achieved 100% joint efficiency and the P-Ti base metal fracture with no crack at the weld interface. However, many joints at friction times of 1.2 and 1.5 s fractured at the weld interface, although those achieved 100% joint efficiency, because whole weld interface temperature was below 1150 K. On the other hand, many joints at a friction pressure of 90 MPa with high forge pressure also fractured at the weld interface, although those achieved 100% joint efficiency, because the weld interface temperature at the half radius and periphery portions was below 1150 K. Those joints did not have the intermetallic compound layer at the weld interface. The difference of the fractured portion of the joint in both applied friction pressures was due to the difference between the maximum temperature at the weld interface during the friction process and the deformation amount of the LCS side caused by applied forge pressure. To obtain 100% joint efficiency with the P-Ti base metal fracture with no crack at the weld interface, the joint should be made with high forge pressure, low friction pressure, and with opportune friction time at which the temperature at whole weld interface reached around 1150 K.  相似文献   

19.
Aluminum alloys and high density polyethylene are utilized in a wide variety of industrial applications. In the present work the feasibility of friction stir butt welding between AA5059 alloy and high density polyethylene sheets is examined. The bonding mechanism, joint strength, and microhardness are considered in this study. Various welding parameters and tool alignment were investigated until sound joints were achieved by positioning approximately 85% of the rotating tool in the aluminum material on the advancing side (1.4 mm offset) at constant spindle speed and traverse speed of 710 rpm and 63 mm/min, respectively. The results indicate that AA5059 aluminum and high density polyethylene sheets can be successfully joined with a combination of secondary bonding and mechanical interlocking of the materials, which provides a potential alternative to adhesive bonding or mechanical fastening.  相似文献   

20.
S31042 heat-resistant steel was joined by linear friction welding(LFW) in this study. The microstructure and the mechanical properties of the LFWed joint were investigated by optical microscopy, scanning electronic microscopy, transmission electron microscopy, hardness test and tensile test. A defect-free joint was achieved by using LFW under reasonable welding parameters. The dynamic recrystallization of austenitic grains and the dispersed precipitation of NbCrN particles resulting from the high stress and high temperature in welding, would lead to a improvement of mechanical property of the welded joint.With increasing the distance from the weld zone to the parent metal, the austenitic grain size gradually increases from ~1μm to ~150μm, and the microhardness decreases from 301 HV to 225 HV. The tensile strength(about 731 MPa) of the welded joint is comparable to that of the S31042 in the solution-treated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号