共查询到20条相似文献,搜索用时 6 毫秒
1.
Sudeshna Chaudhari Yogesh Sharma Panikar Sathyaseelan Archana Rajan Jose Seeram Ramakrishna Subodh Mhaisalkar Madhavi Srinivasan 《应用聚合物科学杂志》2013,129(4):1660-1668
Polyaniline nanofibers (PANI‐NFs) web are fabricated by electrospinning and used as electrode materials for supercapacitors. Field‐emission scanning electron microscope micrographs reveal nanofibers web were made up of high aspect ratio (>50) nanofibers of length ~30 μm and average diameter ~200 nm. Their electrochemical performance in aqueous (1M H2SO4 and Na2SO4) and organic (1M LiClO4 in propylene carbonate) electrolytes is compared with PANI powder prepared by in situ chemical oxidative polymerization of aniline. The electrochemical properties of PANI‐NFs web and PANI powder are studied using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. PANI‐NFs web show higher specific capacitance (~267 F g?1) than chemically synthesized PANI powder (~208 F g?1) in 1M H2SO4. Further, PANI‐NFs web demonstrated very stable and superior performance than its counterpart due to interconnected fibrous morphology facilitating the faster Faradic reaction toward electrolyte and delivered specific capacitance ~230 F g?1 at 1000th cycle. Capacitance retention of PANI‐NFs web (86%) is higher than that observed for PANI powder (48%) indicating the feasibility of electro spun PANI‐NFs web as superior electrode materials for supercapacitors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
2.
导电聚合物复合材料作为超级电容器电极材料 总被引:1,自引:0,他引:1
本文综述了基于导电聚合物的复合材料(导电聚合物/碳材料、导电聚合物/金属氧化物材料、导电聚合物/碳材料l金属氧化物材料)作为电极材料在超级电容器中的应用进展,指出将导电聚合物与碳材料或金属氧化物复合,双电层电容与法拉第准电容结合,有机材料与无机材料结合,是超级电容器电极材料研究的重要发展方向. 相似文献
3.
超级电容器作为一种新型的储能装置,具有长寿命、高功率等特点,在诸多领域内有广泛的应用前景。在影响超级电容器性能的所有因素中,电极材料的性能起着决定性的作用。二氧化锰(MnO2)具有原料易得,价格低廉,来源广泛,环境友好等优点。综述了MnO2超级电容器电极材料的储能机理,纳米MnO2的微观结构与电化学特性之间的关系,并从纳米MnO2的制备及其综合改性角度,综述其合成、掺杂改性、复合方法在MnO2基电极材料的新进展,指出了MnO2基超级电容器电极材料的主要研究方向。 相似文献
4.
5.
Jianfeng Jia Fangyan LuoChaojun Gao Can SuoXinchang Wang Hongzhang SongXing Hu 《Ceramics International》2014
La-doped NiO nanofibers were synthesized by the electrospinning method. The X-ray diffraction (XRD) pattern showed that La doping does not change the crystal structure up to the doping ratio of La/Ni=1.5%. Electrochemical properties of La-doped NiO nanofibers were investigated using cyclic voltammetry and galvanostatic charge/discharge. The results showed that the La doping can enhance the charge/discharge specific capacitance and electrochemical stability of the NiO nanofibers. Especially, the sample with doping ratio of La/Ni=1.5% could reach a discharge specific capacitance of 94.85 F g−1 at a constant current density of 5 mA cm−2. 相似文献
6.
《Ceramics International》2015,41(6):7402-7410
Flexible composites with manganese oxides (MnOx) nanocrystals encapsulated in electropun carbon nanofibers were successfully fabricated via a simple and practical combination of electrospinning and carbonization process. The as-formed MnOx/carbon nanofibers composites have a rough surface with MnOx nanoparticles well embedded in the carbon nanofibers backbones. When used as electrodes for supercapacitor, the resulting MnOx/carbon nanofiber composites exhibit good electrochemical performance with a specific capacitance of 174.8 F g−1 at 2 mV s−1 in 0.5 M Na2SO4 electrolyte, a good rate capability at high current density and long-term cycling stability. It is expected that such freestanding composites could be promising electrodes for high-performance supercapacitors. 相似文献
7.
8.
9.
V. Ruiz C. Blanco R. Santamaría J.M. Jurez-Galn A. Sepúlveda-Escribano F. Rodríguez-Reinoso 《Microporous and mesoporous materials》2008,110(2-3):431-435
Various microporous carbon molecular sieves are studied as active electrode material for supercapacitors in order to clarify the controversy about the accessibility of the electrolyte to the micropores. Cyclic voltammetry experiments were performed in electrolytes with different ion size. The results showed a clear ion sieving effect when the porosity of the carbon was similar to that of the ions of the electrolyte. Impedance spectroscopy was also useful to evidence diffusion restrictions of the ions into the pores. The results obtained in this study clearly demonstrate that in aqueous media very narrow micropores (0.5 nm) are still capable of forming the electrical double layer. Therefore, the majority of microporous carbons, with wider porosity, are perfectly suitable as active electrode materials for supercapacitors when aqueous electrolytes are used. 相似文献
10.
11.
木质素是一种多酚聚合物,具有丰富的芳香类官能团和含氧官能团,且在碳化后形成的多孔碳材料易于转化为石墨化碳层,从而形成局部高导电区域,是制备超级电容器的优质前体,故将木质素用于混合型超级电容器逐渐成为研究热点之一。本文综述了近年来木质素碳材料在混合型超级电容器电极材料中的应用,重点分析了木质素在其中的作用,将其总结为3类进行介绍,包括木质素/多孔炭(石墨烯、碳纳米管)型、木质素/金属化合物(金属氧化物、硫化物、氢氧化物)型和木质素/导电聚合物(聚苯胺、聚吡咯、聚噻吩)型。此外,还介绍了木质素基混合型超级电容器在柔性超级电容器中的应用。最后,总结了木质素基材料应用在混合超级电容器中的优势和挑战。 相似文献
12.
13.
14.
In the framework of this study, a facile method to obtain polypyrrole (PPy)/carbon nanotubes composites is presented. Chemical polymerization of PPy directly on the carbon nanotubes allows to obtain a homogenous distribution of the polymer. A low amount of carbon additive, varying from 1.5 to 5.5 wt %, is applied in order to prevent the decrease of capacitance value due to the presence of a low-capacitance component and, at the same time, to protect the electrode material from mechanical changes during cycling electrical measurements. The electrochemical properties, such as capacitance, its retention at different current loads, cycling stability, or self-discharge, are discussed. Improvement of electrochemical performances of the synthesized materials is observed mostly during cyclic stability measurements and at high current regimes. The obtained results confirm that the addition of only 3% of carbon nanotubes provides the best electrochemical performances as electrode materials for supercapacitor application. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48867. 相似文献
15.
16.
《Ceramics International》2018,44(18):22622-22631
This study presents the facile preparation of novel MnCo2O4.5 microspindles (MSs) for the first time through a rapid solvothermal method combined with subsequent calcination of the precursor at 450 °C for 4 h in air. The MnCo2O4.5 MSs have an average length of 4–5 µm and diameter of 2–4 µm, respectively, achieving a specific surface area as high as 83.3 m2 g−1. In addition, the size and morphology of the MnCo2O4.5 microstructures could be easily tuned by some parameters including reaction time, volume ratio of ethanol to water, and dosage of urea. The electrochemical performance was further evaluated in three-electrode system, detailed electrochemical characterizations revealed that such MnCo2O4.5 MSs exhibited both high specific capacitance of 343 F g−1 at a current density of 0.5 A g−1 and excellent cycling performance of 81.3% capacitance retention after 5000 cycles at a current density of 4 A g−1 in 2 M of KOH electrolyte, which made it a potential electrode material for an advanced supercapacitor. Furthermore, the present synthetic method is simple and can be extended to the synthesis of other electrode materials based on transition metal oxides. 相似文献
17.
Bushra Bashir Abdur Rahman Humera Sabeeh Muhammad Azhar Khan Mohamed F. Aly Aboud Muhammad Farooq Warsi Imran Shakir Philips Olaleye Agboola Muhammad Shahid 《Ceramics International》2019,45(6):6759-6766
Nickel ferrites with high theoretical capacitance value as compared to the other metal oxides have been applied as electrode material for energy storage devices i.e. batteries and supercapacitors. High tendency towards aggregation and less specific surface area make the metal oxides poor candidate for electrochemical applications. Therefore, the improvements in the electrochemical properties of nickel ferrites (NiFe2O4) are required. Here, we report the synthesis of graphene nano-sheets decorated with spherical copper substituted nickel ferrite nanoparticles for supercapacitors electrode fabrication. The copper substituted and unsubstituted NiFe2O4 nanoparticles were prepared via wet chemical co-precipitation route. Reduced graphene oxide (rGO) was prepared via well-known Hummer's method. After structural characterization of both ferrite (Ni1-xCuxFe2O4) nanoparticles and rGO, the ferrite particles were decorated onto the graphene sheets to obtain Ni1-xCuxFe2O4@rGO nanocomposites. The confirmation of preparation of these nanocomposites was confirmed by scanning electron microscopy (SEM). The electrochemical measurements of nanoparticles and their nanocomposites (Ni0.9Cu0.1Fe2O4@rGO) confirmed that the nanocomposites due to highly conductive nature and relatively high surface area showed better capacitive behavior as compared to bare nanoparticles. This enhanced electrochemical energy storage properties of nanocomposites were attributed to the graphene and also supported by electrical (I-V) measurements. The cyclic stability experiments results showed ~65% capacitance retention after 1000 cycles. However this retention was enhanced from 65% to 75% for the copper substituted nanoparticles (Ni0.9Cu0.1Fe2O4) and 65–85% for graphene based composites. All this data suggest that these nanoparticles and their composites can be utilized for supercapacitors electrodes fabrication. 相似文献
18.
《Ceramics International》2016,42(4):5001-5010
Co and Mn co-doped with NiO nanostructued materials, such as, Ni0.95Co0.01Mn0.04O1−δ, Ni0.95Co0.04Mn0.01O1−δ and Ni0.95Co0.025Mn0.025O1−δ were synthesized by chemical synthesis route and studied for potential application as electrode materials for supercapacitors. The phase structure of the materials was characterized by X-ray diffraction (XRD) and the crystallographic parameters were found out and reported. FTIR (Fourier Transform Infrared) spectroscopy revealed the presence of M–O bond in the compounds. The particle size of the materials was found to be in the range of 291.5–336.5 nm. The morphological phenomenon of the materials was studied by scanning electron microscopy (SEM) and the particles were found to be in spherical shape with average grain size of 14–28 nm. EDAX analysis confirmed the presence of appropriate levels of elements in the samples. The in-depth morphological characteristics were also studied by HR-TEM (High Resolution Tunneling Electron Microscopy). Cyclic voltammetry, chronopotentiometry and electrochemical impedance measurements were applied in an aqueous electrolyte (6 mol L−1 KOH) to investigate the electrochemical performance of the Co and Mn co-doped NiO nanostructured electrode materials. The results indicate that the doping level of Co and Mn in NiO had a significant role in revealing the capacitive behaviors of the materials. Among the three electrode materials studied, Ni0.95Co0.025Mn0.025O1−δ electrode material shows a maximum specific capacitance of 673.33 F g−1 at a current density of 0.5 A g−1. The electrochemical characteristics of blank graphite sheet were studied and compared with the performance of Co/Mn co-doped NiO based electrode materials. Also, Ni0.95Co0.025Mn0.025O1−δ has resulted in a degradation level of 4.76% only after 1000 continuous cycles, which shows its excellent electrochemical performance, indicating a kind of potential candidate for supercapacitors. 相似文献
19.
Polyaniline/MnO2/graphite felt (PMGF) composite, which can be used as a novel free‐standing, flexible electrode for supercapacitors, was fabricated via a facile electrochemical method. Polyaniline/graphite felt (PANI/GF) electrode was prepared by electropolymerization of PANI onto the GF. Subsequently, manganese dioxide (MnO2) was electrodeposited on the surface of the PANI/GF electrode to prepare PMGF electrode. The microstructure and morphology of the as‐prepared samples were characterized by Fourier transform infrared spectra, X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specific surface area was examined using N2 adsorption/desorption test. Cyclic voltammogram, chronopotentiometry techniques and electrochemical impedance spectroscopy were introduced to investigate the electrochemical performance of the composites. The PMGF electrode exhibited specific capacitance as high as about 630 F g−1 at the current density of 0.5 A g−1, which is much higher than that of PANI/MnO2 composites reported previously. The high specific capacitance of PMGF may be attributed to the fact that the porous GF is a good conductive matrix for the dispersion of PANI/MnO2 and it can facilitate easy access of electrolytes to the electrode, which results in enhancement of the electrochemical performance of the composite. Moreover, the specific capacitance of PMGF is much larger than that of MnO2/GF (MGF), which may be ascribed to the participant of PANI, which contributes additional pseudocapacitance and electron transport path. POLYM. COMPOS., 34:819–824, 2013. © 2013 Society of Plastics Engineers 相似文献
20.
Polyaniline (PANI) nanofibers are synthesized via a chemical method of rapid mixing for the application of asymmetric supercapacitors. The diameter and aspect ratio of PANI nanofibers is found to be controllable by varying the aniline/oxidant concentration ratio. The ideal capacitive responses of PANI nanofibers between 0.2 and 0.7 V (vs. Ag/AgCl) in concentrated acidic media are demonstrated by cyclic voltammetric (CV) and electrochemical impedance spectroscopic (EIS) analyses coupled with a schematic equivalent-circuit model. The morphologies and textures of nanofibers are examined by scanning electron microscopic (SEM), transmission electron microscopic (TEM) and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopic analyses. An aqueous asymmetric supercapacitor, consisting of a PANI nanofiber cathode and a graphene anode, with proper complementary potential windows is demonstrated in this work, which shows the device energy and power densities of 4.86 Wh kg−1 and 8.75 kW kg−1, respectively. 相似文献