首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical conductivities (σ) of nanocomposites of single-walled carbon nanotubes (SWCNTs) and high density polyethylene (HDPE) have been studied for a large number of nanocomposites prepared in a SWCNT concentration range between 0.02 and 8 wt%. The values of σ obey a percolation power law with an SWCNT concentration threshold, pc = 0.13 wt%, the lowest yet obtained for any kind of carbon-polyethylene nanocomposites. Improved electrical conductivities attest to an effective dispersion of SWCNT in the polyethylene matrix, enabled by the fast quenching crystallization process used in the preparation of these nanocomposites. Characterization by scanning electron microscopy (SEM) and Raman spectroscopy consistently points to a uniform dispersion of separate small SWCNT bundles at concentrations near pc and increased nanotube clustering at higher concentrations. Near pc, high activation energies and geometries of long isolated rods suggest that electron transport occurs by activated electron hopping between nanotubes that are close to each other but still geometrically separate. The degree of SWCNT clustering given by Raman spectroscopy and the barrier energy for electrical conductivity are highly correlated. The nanotubes act as nucleants in the crystallization of the polyethylene matrix, and change the type of supermolecular aggregates from spherulites to axialitic-like objects. The size of crystal aggregates decreases with SWCNT loading, however, in reference to the unfilled polyethylene, the three-dimensional growth geometry extracted from the Avrami exponents remains unchanged up to 2 wt%. Consistency between SEM, Raman and electrical transport behavior suggests that the electrical conductivity is dominated by dispersion and the geometry of the SWCNT in the nanocomposites and not by changes or lack thereof in the HDPE semicrystalline structure.  相似文献   

2.
《Ceramics International》2022,48(18):26565-26574
The channels of single walled carbon nanotubes (SWCNT) were filled with eutectic composition consisting of PbSnF4 and SnF2. The nanocomposite was investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), X-ray energy dispersive (EDX) spectroscopy and Raman spectroscopy. The SnF2 and PbSnF4 nanocrystals form independent regions with disordered atomic region between them inside the SWCNT with a diameter of 20.0(3) Å. In the PbSnF4 region there are two separate fragments connected by a twinning plane. Structural models of the PbSnF4 twin nanocrystal and SnF2 nanocrystal inside the nanotube with chilarity (26,0) were constructed and computer modelling of TEM-image of E(PbSnF4;SnF2)@SWCNT nanocomposite was performed. Solid-state FIB with Ce as anode, dispersed E(PbSnF4;SnF2)@SWCNT + SnF2 as a composite-cathode and 95.03%LaF3+4.97%BaF2 electrolyte was investigated by the impedance spectroscopy and cyclic voltammetry. The current density reached ~0.6 A/m2 at 180 °C, the open circuit voltage of the pellet at room temperature was 1.9 V.  相似文献   

3.
The influence of gas flow on nanotube diameter during the synthesis of high-purity, very long single-wall carbon nanotubes (SWCNT) via aerosol-assisted chemical vapour deposition is reported. The sample morphology, nanotube yield, defect concentration and amount of carbonaceous impurities, as well as the mean diameter and the diameter distribution of the SWCNTs were analysed by combined scanning- and transmission electron microscopy, Fourier Transform Raman spectroscopy and optical absorption spectroscopy. The results show that by using a solution of ferrocene and sulphur in m-xylene the addition of sulphur as a promoter was found to enhance the SWCNT growth and to increase the yield. A reduction of the mean diameter and a change in the diameter distribution are observed when the total gas flow is increased.  相似文献   

4.
CuX@SWCNT (X = Cl, Br, I) nanostructures were prepared by capillary filling of 1.4–1.6 nm single-walled carbon nanotubes (SWCNT) with copper halides. The structure of CuX@SWCNT (X = Cl, Br, I) represents a distorted two-layer hcp of halogen atoms arranged along the SWCNT. The EXAFS and the high angle angular dark field (HAADF) HRTEM data indicate that Cu is partially coordinated by C. According to the optical absorption, valence band photoemission spectroscopy and work function measurements, a Fermi level (FL) downshift as compared with the initial value for the nanotubes and a corresponding charge transfer from the nanotubes to the 1D crystals is observed for CuX@SWCNT nanostructures. The FL shift increases in the sequence CuI < CuBr < CuCl due to an increase of the electron affinity for the halogen atoms. The XPS data confirm the acceptor effect of copper halides and indicate that metallic and semiconducting nanotubes behave differently. Raman spectroscopy performed under electrochemical charging allowed estimation of the value of charge transfer between the nanotube walls and the intercalated 1D crystal. The X-ray absorption and emission spectra for carbon and copper thresholds revealed a new energy level composed of the carbon 2рz and copper 3d-orbitals. This indicates the Cu–C bonding, which in line with the structural HAADF HRTEM and EXAFS data.  相似文献   

5.
The unexpected presence of a linear arrangement of co-axially oriented N2 molecules inside aligned single-walled carbon nanotubes is revealed by high resolution near-edge X-ray absorption spectroscopy. The encapsulated N2 molecules exhibit free stretching vibrations with a long electronic lifetime of the X-ray-excited anti-bonding π1 states. Molecular dynamics simulations confirm that narrow-diameter nanotubes (d < 1 nm) are crucial for stabilizing the linear arrangement of aligned N2 molecules.  相似文献   

6.
In this paper, a cerium dioxide (CeO2) modified titanium dioxide (TiO2) nanotube array film was fabricated by electrodeposition of CeO2 nanoparticles onto an anodized TiO2 nanotube array. The structural investigation by X-ray diffraction, scanning electron microscopy and transmission electron microscopy indicated that the CeO2 nanoparticles grew uniformly on the walls of the TiO2 nanotubes. The composite was composed of cubic-phase CeO2 crystallites and anatase-phase TiO2 after annealing at 450 °C. The cyclic voltammetry and chronoamperometric charge/discharge measurement results indicated that the CeO2 modification obviously increased the charge storage capacity of the TiO2 nanotubes. The charge transfer process at the surface, that is, the pseudocapacitance, was the dominate mechanism of the charge storage in CeO2-modified TiO2 nanotubes. The greater number of surface active sites resulting from uniform application of the CeO2 nanoparticles to the well-aligned TiO2 nanotubes contributed to the enhancement of the charge storage density.  相似文献   

7.
Bipolar diffusion charging characteristics of airborne single-wall carbon nanotube (SWCNT) agglomerates were investigated in the mobility diameter range of 100–1000 nm. Neutral fractions of three types of SWCNT aerosols following bipolar charge equilibrium in a radioactive source were experimentally measured to infer their electrical charging characteristics. Significant deviation from Boltzmann and Fuchs stationary charge equilibrium was observed, with neutral fractions of SWCNT particles lower by 30–53% compared to that of spherical particles of the same mobility. Particles with mobility diameter larger than 400 nm showed high electrical charging efficiencies compared to that of mobility-equivalent spherical particles. Higher charging efficiencies of SWCNT particles were attributed to their higher electrical capacitance resulting from complex nonspherical morphologies. Numerical calculations using idealized fiber geometries confirmed the qualitative trend in the experimental data. The electrical capacitance of nanotubes particles deduced from experimentally measured neutral fractions were also found to be higher by a factor ranging from 1.6 to 4.6 compared to that of mobility-equivalent spherical particles, indicating high charge carrying capacity. The charging-equivalent diameters of nanotube particles were computed and were found to be higher than their mobility diameter by a factor of 2.85–4.34.  相似文献   

8.
The ferrocene–porphyrin–single-walled carbon nanotube (Fc–H2P–SWCNT) triad hybrid was prepared by amidation reaction between carboxylated SWCNT and aminoporphyrin bearing an appended ferrocenyl substituent. The hybrid described here was fully characterized by a combination of analytical techniques such as Fourier transform infrared spectroscopy, Raman, absorption and emission spectroscopy, atomic force and scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The steady emission characteristics revealed the existence of the effective photoinduced electron transfer among ferrocene, excited porphyrin moiety and SWCNT, which was further confirmed by the results of time-resolved transient absorption spectra. The final lifetime of charge-separation state was observed to be 62.9 μs in N,N-dimethylformamide, which was significant increased compared to the reference nanohybrid porphyrin–SWCNT and the reported ferrocene–porphyrin–fullerene triad. Therefore, Fc–H2P–SWCNT triad hybrid constructed by amidation is rationally expected to be an improved photon-to-electron conversion system.  相似文献   

9.
Gas sensing in carbon nanotubes is still poorly understood. Possible mechanisms are charge transfer between adsorbed gas molecules and the nanotubes or gas-induced changes at the interface between the nanotubes and their metal contacts. For carbon nanotube networks, it is also important to understand how defects and junctions formed by crossing nanotubes affect adsorption. Previous work demonstrates that for devices made with a single carbon nanotube, the response was mainly due to modifications at the nanotube/metal contact interfaces rather than molecular adsorption on the nanotube. Here it is shown that in networks of carbon nanotubes the gas sensitivity is due to both the nanotube/metal contacts and the carbon nanotube network. The network effects are dominated by gas-induced changes in nanotube/nanotube junctions, rather than gas adsorption on regions of the nanotubes away from the junctions.  相似文献   

10.
Based on plasma-treated single wall carbon nanotubes (SWCNTs), SWCNT/SiO2 and thiol groups-functionalized SWCNT/SiO2 hybrids have been fabricated through a sol–gel process. By means of thiol groups, Ag nanoparticles have been in situ synthesized and bonded onto the SiO2 shell of SWCNT/SiO2 in the absence of external reducing agent, resulting in the stable carbon nanotube/SiO2/Ag nanoparticles hybrids. This strategy provides a facile, low–cost, and green methodology for the creation of carbon nanotube/inorganic oxides-metal nanoparticles hybrids.  相似文献   

11.
Hua Yang  Hui Zhang 《Polymer》2006,47(21):7607-7610
Full atomistic molecular dynamics simulations have been used to study the diffusion of alkane molecule in single wall carbon nanotube (SWCNT), with different alkane chain lengths and nanotube diameters. In this paper, we calculated the self-diffusion coefficient, mean-square gyration and bond-orientation order parameter of alkane molecule and the average intermolecular interaction energy per segment between SWCNT and alkane. Furthermore, structure of alkane in SWCNT was characterized through the radial distribution function, with results showing that the self-diffusion coefficient is related to the nanotube diameter. The component of mean-square gyration in z-direction scales with alkane chain length in SWCNT(9,9) like N1.07±0.04, which is in good agreement with the prediction from scaling theory for polymers. The obtained results show that nanotube diameter and alkane chain length are important factors affecting the behavior of one-dimensional confined alkanes.  相似文献   

12.
The first in situ electron paramagnetic resonance (EPR) spectroelectrochemical study of C60 fullerene peapods (C60@SWCNT) as well as that of single-walled carbon nanotubes (SWCNTs) in different electrolyte solutions describes the formation of spin states by charge transfer reactions. Electrochemical reduction of peapods at high negative potentials causes the production of spins at the SWCNT site, while the intratubular fullerene is unchanged.Slightly anisotropic EPR signals were detected during electrochemical reduction of single-walled carbon nanotubes and fullerene peapods in the potential region from −1.75 to −2.15 V vs. decamethylferrocene/decamethylferrocinium couple. They are centered at g = 2.0038 and exhibit a hyperfine structure indicating the presence of functional groups containing N, O, H atoms in neighborhood. They differ from the EPR signals of chemically (potassium) doped SWCNT and C60@SWCNT. As the EPR signal is influenced by the electrolyte counter ions a reaction with electrolysis products of tetraalkylammonium cations is taken into consideration. No EPR lines of fullerene anions were found in electrochemically treated peapods, but these anions are detectable, if a free C60 in solution is cathodically reduced on a SWCNT electrode.  相似文献   

13.
We investigated the formation of self-organized zirconium titanate nanotubes by anodizing a Ti-35Zr alloy in 1 M (NH4)2SO4 + 0.1-2.0 wt.% NH4F electrolytes. The morphology and composition of the zirconium titanate nanotube are controlled by the applied electrochemical conditions. The outer diameter of nanotubes is controlled by the anodization potential in the range between 1 and 100 V (versus Ag/AgCl). Tubes with diameters from 14 to 470 nm can be grown. The nanotube length correlates with the anodic charge up to a length where significant dissolution of the nanotube layer is observed. The wall thickness, composition of the nanotubes and porosity of the nanotube layer are significantly affected by the fluoride ion concentration. The length limiting factor of the nanotube growth is found to be the diffusion of ionic species in the electrolyte.  相似文献   

14.
In this study, we used the electrochemical anodization to prepare TiO2 nanotube arrays and applied them on the photoelectrode of dye-sensitized solar cells. In the field emission scanning electron microscopy analysis, the lengths of TiO2 nanotube arrays prepared by electrochemical anodization can be obtained with approximately 10 to 30 μm. After titanium tetrachloride (TiCl4) treatment, the walls of TiO2 nanotubes were coated with TiO2 nanoparticles. XRD patterns showed that the oxygen-annealed TiO2 nanotubes have a better anatase phase. The conversion efficiency with different lengths of TiO2 nanotube photoelectrodes is 3.21%, 4.35%, and 4.34% with 10, 20, and 30 μm, respectively. After TiCl4 treatment, the efficiency of TiO2 nanotube photoelectrode for dye-sensitized solar cell can be improved up to 6.58%. In the analysis of electrochemical impedance spectroscopy, the value of Rk (charge transfer resistance related to recombination of electrons) decreases from 26.1 to 17.4 Ω when TiO2 nanotubes were treated with TiCl4. These results indicate that TiO2 nanotubes treated with TiCl4 can increase the surface area of TiO2 nanotubes, resulting in the increase of dye adsorption and have great help for the increase of the conversion efficiency of DSSCs.  相似文献   

15.
It is known that single-walled carbon nanotubes (SWCNTs) can be functionalized by fluorine gas. Here, we report neutralized fluorine radical detection using a matted sheet of SWCNTs, prepared by alternating current dielectrophoresis. Upon exposure to neutralized radicals containing fluorine atoms in a plasma, as model analytes, the conductance of the SWCNT matt showed fast modulation. The transduction mechanism was investigated by electrical transport measurements, X-ray photoelectron spectroscopy and Raman spectroscopy. Metallic nanotubes were shown to react covalently to the near exclusion of semiconducting species. The selectivity was promoted by the curvature-induced strain of the nanotubes. The results open new opportunities for the detection of fluorine radicals at specific locations inside the reaction zone using a simple, miniaturized carbon nanotube network.  相似文献   

16.
M. Baibarac  S. Lefrant 《Carbon》2009,47(5):1389-84
Electrochemical polymerization of 2,2′-bithiophene (BTh) on single-walled carbon nanotube (SWCNT) films has been studied by Raman scattering and infrared absorption spectroscopy. Covalent functionalization of SWCNTs with poly(bithiophene) (PBTh) in its un-doped and doped states is demonstrated. The occurrence of a charge transfer process at the interface of PBTh and SWCNTs, is shown by: (i) an up-shift of the Raman lines associated with the radial breathing modes of SWCNTs that reveals both a doping process and an additional twisting together as a rope with the conducting polymer as binding agent; (ii) a new Raman band in the range 1430-1450 cm−1 indicating the functionalization of SWCNTs with PBTh in doped and un-doped states; (iii) strong absorption bands situated in the interval 600-800 cm−1 resulting from steric hindrance produced by the nanotube binding to the polymeric chain. Treatment of the PBTh/SWCNT composite with aqueous NH4OH solution forms un-doped PBTh covalently functionalized SWCNTs. At the resonant excitation of the metallic tubes, an additionally enhanced Raman process is generated by plasmon excitation in the metallic nanotubes. It is evidenced by a particular behavior in the Stokes and anti-Stokes branch of the PBTh Raman line at 1450 cm−1.  相似文献   

17.
J. Fan  R. Yuge  K. Hata 《Carbon》2007,45(4):722-726
We show that the efficiency of incorporating C60 in single-wall carbon nanotubes (SWCNTs) and that of the incorporated C60’s release from the SWCNTs depend on the SWCNT diameter. Through transmission electron microscopy, we found that the C60 incorporation efficiency reached its maximum at diameters of 1-2 nm, while the efficiency of C60 release from SWCNTs in toluene was maximized at 3-5 nm. The difficulty of C60 release from SWCNTs with diameters of 5-6 nm might reflect either the effective packing of C60 inside SWCNTs or a flattened SWCNT structure. We occasionally observed C60 molecules arranged in a line along the sidewall inside SWCNTs with large diameters/width (>7 nm), indicating that large diameter SWCNTs were sometimes flattened.  相似文献   

18.
Electrocatalytical activity of carbon nanotube carpets grown on oxidized silicon wafers by spray pyrolysis catalytic chemical vapor deposition has been examined for use in electrochemical devices. To determine the influence of electron donor doping on electrochemical quality, N-atoms were incorporated into the nanotube structure during growth. N-doping, as revealed by electron microscopy, Raman spectroscopy and X-ray diffraction data, led to essential changes of the tubule morphology and structure. For the electrochemical investigation of the carbon nanotube electrodes produced, cyclic voltammetry and electrochemical impedance spectroscopy were used, while ferrocene (FeCp2) and uric acid served as reference redox systems. Results have revealed enhanced electron transfer kinetics on the N-doped electrodes. The electronic band structure of carbon nanotubes and electrochemical gating are shown to be responsible for the charge transfer kinetics on nanotube electrodes.  相似文献   

19.
Two new conjugated poly-Schiff bases (PPpP and PPmP) were synthesized by polycon-densation of p-phenylene diamine or m-phenylene diamine with 2,6-pyridine dicarboxal-dehyde. PPpP and PPmP can from charge transfer complexes with iodine. Maximum conductivity of PPpP-iodine complex at room temperature is 10−6 S/cm, which is 2 orders of magnitude higher than that of PPmP-iodine complex. Electronic spin resonance measurements discovered that there are stable radicals in both charge transfer complexes; and g value, line width, and spin concentration depend on doping degree. Magnetic susceptibility of charge transfer complexes of PPmP–iodine is composed of Curie magnetic susceptibility (χc) and Pauli magnetic susceptibility (χp). Its Curie constant (C), Curie spin concentration (Nc), and density of state at the Fermi level also depend on doping degree. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Wei L  Tezuka N  Umeyama T  Imahori H  Chen Y 《Nanoscale》2011,3(4):1845-1849
Single-walled carbon nanotube (SWCNT) thin films, containing a high-density of semiconducting nanotubes, were obtained by a gel-centrifugation method. The agarose gel concentration and centrifugation force were optimized to achieve high semiconducting and metallic nanotube separation efficiency at 0.1 wt% agarose gel and 18,000g. The thickness of SWCNT films can be precisely controlled from 65 to 260 nm with adjustable transparency. These SWCNT films were applied in photoelectrochemical devices. Photocurrents generated by semiconducting SWCNT enriched films are 15-35% higher than those by unsorted SWCNT films. This is because of reducing exciton recombination channels as a result of the removal of metallic nanotubes. Thinner films generate higher photocurrents because charge carriers have less chances going in metallic nanotubes for recombination, before they can reach electrodes. Developing more scalable and selective methods for high purity semiconducting SWCNTs is important to further improve the photocurrent generation efficiency by using SWCNT-based photoelectrochemical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号