首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The thermal conductive polyamide-6/graphene (PG) composite is synthesized by in situ ring-opening polymerization reaction using ε-caprolactam as the monomer, 6-aminocaproic acid as the initiator and reduced graphene oxide (RGO) as the thermal conductive filler. The generated polyamide-6 (PA6) chains are covalently grafted onto graphene oxide (GO) sheets through the “grafting to” strategy with the simultaneous thermal reduction reaction from GO to RGO. The homogeneous dispersion of RGO sheets in PG composite favors the formation of the consecutive thermal conductive paths or networks at a relatively low GO sheets loading, which improves the thermal conductivity (λ) from 0.196 W m−1 K−1 of neat PA6 to 0.416 W m−1 K−1 of PG composite with only 10 wt% GO sheets loading.  相似文献   

2.
Epoxy composites filled with both graphene oxide (GO) and diglycidyl ether of bisphenol-A functionalized GO (DGEBA–f–GO) sheets were prepared at different filler loading levels. The correlations between surface modification, morphology, dispersion/exfoliation and interfacial interaction of sheets and the corresponding mechanical and thermal properties of the composites were systematically investigated. The surface functionalization of DGEBA layer was found to effectively improve the compatibility and dispersion of GO sheets in epoxy matrix. The tensile test indicated that the DGEBA–f–GO/epoxy composites showed higher tensile modulus and strength than either the neat epoxy or the GO/epoxy composites. For epoxy composite with 0.25 wt% DGEBA–f–GO, the tensile modulus and strength increased from 3.15 ± 0.11 to 3.56 ± 0.08 GPa (∼13%) and 52.98 ± 5.82 to 92.94 ± 5.03 MPa (∼75%), respectively, compared to the neat epoxy resin. Furthermore, enhanced quasi-static fracture toughness (KIC) was measured in case of the surface functionalization. The GO and DGEBA–f–GO at 0.25 wt% loading produced ∼26% and ∼41% improvements in KIC values of epoxy composites, respectively. Fracture surface analysis revealed improved interfacial interaction between DGEBA–f–GO and matrix. Moreover, increased glass transition temperature and thermal stability of the DGEBA–f–GO/epoxy composites were also observed in the dynamic mechanical properties and thermo-gravimetric analysis compared to those of the GO/epoxy composites.  相似文献   

3.
The three different sized chemical functionalized graphene (GO) sheets, namely GO-1 (D50 = 10.79 μm), GO-2 (D50 = 1.72 μm) and GO-3 (D50 = 0.70 μm), were used to fabricate a series of epoxy/GO nanocomposites. Fracture toughness of these materials was assessed. The results indicate that GO sheets were dramatically effective for improving the fracture toughness of the epoxy at a very significant low loading. The enhancement of the epoxy toughness was strongly dependent on the size of GO sheets incorporated. GO-3 with smaller sheet size gave the maximum reinforcement effect compared with GO-1 and GO-2. The incorporation of only 0.1 wt% GO-3 was observed to increase the fracture toughness of pristine epoxy by ∼75%. The toughening mechanism was well understood by fractography analysis of the tested samples. Massive cracks in the fracture surfaces of the epoxy/GO nanocomposites were observed. The GO sheets effectively disturbed and deflected the crack propagation due to its two dimensional structure. GO-3 sheets with smaller size were highly effective in resisting crack propagation, and a large area of whitening zone was observed. The incorporation of GO also enhanced the stiffness and thermal stability of the epoxy.  相似文献   

4.
Highly dispersed platinum nanoparticles (NPs) were fabricated on the surface of few-layered reduced graphene oxide (Pt/RGO) via direct ethylene glycol reduction of PtCl62  in aqueous solution. This well-defined Pt/RGO catalyst was highly selective and active for the hydrogenation of cinnamaldehyde (CAL) to corresponding cinnamyl alcohol (COL) under mild conditions. It was found that the selectivity of COL remained 85.3% at 97.8% CAL conversion in ethanol. These results could be ascribed to the well dispersed Pt NPs on RGO sheets, well dispersion of Pt/RGO in ethanol and ethanol can inhibit the generation of acetals.  相似文献   

5.
Jatropha curcas oil based alkyd/epoxy/GO bionanocomposites were prepared by direct solution blending of alkyd/epoxy blend matrix with GO nano filler. Structures and properties of the bionanocomposites were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and tensile testing. X-ray diffraction and transmission electron microscopy study demonstrates the formation of highly exfoliated GO layers and its homogeneous dispersion throughout the polymer matrix with 1 and 3 wt% GO. However, the intercalated structure is predominant with 5 wt% GO. The homogeneous dispersion and the strong interaction of the GO layers and the polymer matrix induced the significant improvement in thermal and mechanical properties of the bionanocomposites. The tensile strength and elastic modulus of the bionanocomposite increased by 133% and 68% respectively with 3 wt% GO loading. The thermal stability of the bionanocomposite improved by 39 °C and Tg is shifted toward higher temperature by 20 °C as compared to the pristine polymer. Incorporation of GO significantly decreases the curing time of the alkyd/epoxy resin blend.  相似文献   

6.
By using a catalytic growth procedure, carbon nanotubes (CNTs) are in situ formed on reduced graphene oxide (RGO) sheet at 600 °C. CNTs growing on RGO planes through covalent C–C bond possess lower interfacial contact electrical resistance. As a hybrid structure, the CNTs/graphene (CNT/G) are well dispersed into poly (dimethyl siloxane). The hybrid combining electrically lossy CNTs and RGO, which disperses in electrically insulating matrix, constructs an electromagnetic wave (EM) absorbing material with ternary hierarchical architecture. The interfacial polarization in heterogeneous interface plays an important role in absorbing EM power. When the filler loading is 5 wt.% and thickness of absorber is 2.75 mm, the minimum value of reflection coefficient and the corresponding frequency are −55 dB and 10.1 GHz, and the effective absorption bandwidth reaches 3.5 GHz. Therefore, combining the CNTs and graphene sheet into three-dimensional structures produces CNT/G hybrids that can be considered as an effective route to design light weight and high-performance EM absorbing material, while the effective EM absorption frequency can be designed.  相似文献   

7.
A highly efficient method has been reported to fabricate the reduced graphene oxide/MnO2 (RGO/MnO2) hybrid materials, a kind of catalysts for oxidative decomposition of methylene blue (MB). The pristine suspension of graphene oxide/manganese sulfate (GO/MnSO4) produced by the modified Hummers method is in situ transformed into GO/MnO2 composites in combination with KMnO4, and then further into RGO/MnO2 composites by means of glucose-reduction. It is found that MnO2 nanoparticles with the size of 20–30 nm are uniformly distributed in the structure of RGO. A series of composites with different mass ratios of RGO to MnO2 has been proved superior catalytic activities, much higher than that of the bare MnO2 for decomposition of MB dye in the presence of H2O2. Typically, 50 mL of MB (50 mg L−1) can be completely decolorized and nearly 66% mineralized at 50 °C in 5 min with 10 mg of the RGO/MnO2 hybrid. According to the adsorption–oxidation–desorption mechanism, the high activity of RGO/MnO2 composites for decomposition of MB is closely related to the positive synergistic effect of RGO and MnO2 with the assistance of H2O2.  相似文献   

8.
Composite films consisting of polypyrrole (PPy) and graphene oxide (GO) were electrochemically synthesized by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of GO. Simultaneous chronoamperometric growth profiles and frequency changes on a quartz crystal microbalance showed that the anionic GO was incorporated in the growing GO/PPy composite to maintain its electrical neutrality. Subsequently, the GO was reduced electrochemically to form a reduced GO/PPy (RGO/PPy) composite by cyclic voltammetry. Specific capacitances estimated from galvanostatic discharge curves in 1 M H2SO4 at a current density of 1 A g?1 indicated that values for the RGO/PPy composite were larger than those of a pristine PPy film and the GO/PPy composite. In the case of 6 mg mL?1 GO for the preparation of GO/PPy, a high specific capacitance of 424 F g?1 obtained at the electrochemically prepared RGO/PPy composite indicated its potential for use as an electrode material for supercapacitors.  相似文献   

9.
Fully dense yttria-stabilized zirconia (YSZ) ceramics reinforced with reduced graphene oxide (RGO) were fabricated by spark plasma sintering (SPS), and their electrical, thermal, and mechanical properties were investigated. Graphene oxide (GO) was exfoliated by a short sonification in dimethylformamide (DMF)/water solution and uniformly mixed with ZrO2 powders. The microstructure of the composites showed that undamaged RGO sheets were homogeneously distributed throughout matrix grains. The electrical conductivity of YSZ composites drastically increased with the addition of RGO, and it reached 1.2 × 104 S/m at 4.1 vol.%. However, the thermal diffusivity increased only 12% with RGO addition. The hardness decreased slightly with RGO addition, whereas the fracture toughness significantly increased from 4.4 to 5.9 MPa1/2. The RGO pull-out and crack bridging contributed to the improved fracture toughness.  相似文献   

10.
Reduced graphene oxide (RGO)-supported platinum (Pt) catalyst was prepared by simple ethylene glycol (EG) reduction and used for hydrogenation of nitroarenes. Characterizations showed that EG as a reductant exhibited more advantages than the widely used hydrazine hydrate to fabricate monodispersed, small sized Pt nanoparticles on the surface of RGO. The yield of aniline over the Pt/RGO-EG catalyst reached 70.2 mol-AN/(mol-Pt min) at 0 oC, which is 12.5 and 19.5 times higher than that of multi-walled carbon nanotube- and active carbon-supported Pt catalysts, respectively. When the reaction temperature was increased to 20 oC, the catalytic activity of Pt/RGO-EG jumped to 1138.3 mol-AN/(mol-Pt min), and it was also extremely active for the hydrogenation of a series of nitroarenes. The unique catalytic activity of Pt/RGO-EG is not only related to the well dispersed Pt clusters on the RGO sheets but also the well dispersion of Pt/RGO-EG in the reaction mixture.  相似文献   

11.
Suman Thakur  Niranjan Karak 《Carbon》2012,50(14):5331-5339
The reduction of graphene oxide (GO) by phytochemicals was investigated using aqueous leaf extracts of Colocasia esculenta and Mesua ferrea Linn. and an aqueous peel extract of orange (Citrus sinensis). The prepared GO and phytoextract reduced GO (RGO) were characterized by ultraviolet–visible spectroscopy, Raman spectroscopy and Fourier transform infrared analyses to provide a clear indication of the removal of oxygen-containing groups from the graphene and the formation of RGO. The extent of reduction was determined from elemental analysis. Formation of few layers of graphene was indicated by transmission electron microscopy. The obtained RGO exhibited good specific capacitance (17–21 Fg?1), high electrical conductivity (3032.6–4006 Sm?1) and high carbon to oxygen ratio (5.97–7.11).  相似文献   

12.
AlI3 synthesized by I2 and Al in ethanol was used as reductive agent to directly obtain flexible reductive graphene oxide (RGO) films with high conductivity of 5320 S/m from graphene oxide (GO) films at a low temperature of 80 °C. This reductive method has provided a low-cost and effective route for large-scale production of graphene with high catalytic activity. Structural evolution during the reduction of GO was studied by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The RGO films served as counter electrode exhibited high electrochemical activity.  相似文献   

13.
Graphene platelets were dispersed into photocurable SU-8 resin. A strong increase of the Tg value as a function of the graphene content was observed and attributed to a mobility hindering effect on the polymeric chains caused by the graphene filler. A significant increase of electrical conductivity is achieved for composites containing functionalized graphene sheets (FGS) between 3 and 4 wt%. The thermal diffusivity of the polymer was observed to increase as a function of filler content in the nanocomposites confirming the conducting nature of the polymeric coating with incorporation of graphene.  相似文献   

14.
Superparamagnetic Fe3O4 nanoparticles were anchored on reduced graphene oxide (RGO) nanosheets by co-precipitation of iron salts in the presence of different amounts of graphene oxide (GO). A pH dependent zeta potential and good aqueous dispersions were observed for the three hybrids of Fe3O4 and RGO. The structure, morphology and microstructure of the hybrids were examined by X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Raman and X-ray photoelectron spectroscopy. TEM images reveal lattice fringes (d311 = 0.26 nm) of Fe3O4 nanoparticles with clear stacked layers of RGO nanosheets. The textural properties including the pore size distribution and loading of Fe3O4 nanoparticles to form Fe3O4–RGO hybrids have been controlled by changing the concentration of GO. An observed maximum (~10 nm) in pore size distribution for the sample with 0.25 mg ml?1 of GO is different from that prepared using 1.0 mg ml?1 GO. The superparamagnetic behavior is also lost in the latter and it exhibits a ferrimagnetic nature. The electrochemical behavior of the hybrids towards chromium ion was assessed and a novel electrode system using cyclic voltammetry for the preparation of an electrochemical sensor platform is proposed. The textural properties seem to influence the electrochemical and magnetic behavior of the hybrids.  相似文献   

15.
Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO(70)/cellulose(100) (GO:cellulose = 70:100 in weight) show an electrical conductivity of 15.28 S m−1. Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation.  相似文献   

16.
Chemically-derived ultralarge graphene oxide (UL-GO) sheets are synthesized from natural graphite (NG) flakes based on the modified Hummers method. Three different approaches are adopted and the effects of ultrasonication, thermal shock expansion, degree of oxidation and precursor NG flake size are specifically studied on the quality and size of GO sheets produced. Results show that the use of large-size NG flakes as precursors does not necessarily produce large GO sheets. Optimal processing conditions are identified to be thermal shock exfoliation with the addition of moderate oxidation, i.e. with an expanded graphite to KMnO4 weight ratio = 1:7 for 24 h, and avoiding ultrasonication during the oxidation process. The resulting UL-GO sheets have a maximum area over 10,000 μm2 with a mean area 3400 μm2 at a yield of 39.8% for GO sheets larger than 2500 μm2, which are considered quite sufficient as precursors for many multifunctional applications, including transparent conductive films, optoelectronic devices and aligned graphene composites.  相似文献   

17.
TiO2/reduced graphene oxide (RGO) nanocomposites Gx (RGO titania nanocomposite, x grams tetrabutyl titanate per 0.03 g RGO, x = 0.25, 0.50, 1.00) were prepared by a hydrothermal method: graphene oxide was reduced to RGO in a 2:1 water:ethanol mixture in the presence of varying quantities of tetrabutyl titanate, which deposited as TiO2 on the RGO sheets. The nanocomposites were characterized by a combination of Fourier transform infrared spectroscopy, diffuse reflectance ultraviolet–visible spectroscopy, photoluminescence spectroscopy, Raman spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy studies. The nanocomposite G0.25 exhibits enhanced nonlinear optical properties compared to its individual components, which is ascribed to a combination of mechanisms. The role of defects and electron/energy transfer in the optical limiting performance of G0.25 was clarified with the help of Raman and photoluminescence spectroscopies. Intensity-dependent switching between reverse saturable absorption and saturable absorption behavior was observed with the G0.50 nanocomposite.  相似文献   

18.
Amino- and epoxy-functionalized graphene oxide (GO) were synthesized separately through a wash-and-rebuild process utilizing two differently terminated silane coupling agents. The modified GO sheets were then incorporated into an epoxy resin to prepare nanocomposites. The addition of 0.2 wt% amino-functionalized GO (APTS-GO) yielded a 32% increase in Young's modulus (3.3 GPa) and 16% increase in tensile strength (81.2 MPa). Less reinforcement was observed with the epoxy-functionalized GO (GPTS-GO) but there was a more significant increase in ductility for GPTS-GO/epoxy, with the fracture toughness (critical intensity factor, KIC) and fracture energy (critical strain energy release rate, GIC) nearly doubling at 0.2 wt% loading (1.46 MPam1/2 and 0.62 kJ/m2 for KIC and GIC, respectively). Raman spectroscopy measurements revealed that the GPTS-GO was dispersed more uniformly than the APTS-GO in the epoxy matrix, and better interfacial stress transfer was found for the APTS-GO. Thus the wash-and-rebuild process affords a novel strategy for controlling the functionality of graphene in the quest to develop high-performance graphene-based nanocomposites.  相似文献   

19.
A novel one-pot process that can produce freestanding reduced graphene oxide (RGO) sheets in large scale through a mechanochemical method is presented, which is based on a 1:1 adduct of hydrazine and carbon dioxide (H3N+NHCO2, solid hydrazine). We were able to synthesize RGO sheets by grinding solid hydrazine with graphene oxide (GO), followed by storing the mixed powder at 50 °C for 10 min. No solvents, nor large vessels, nor post-annealing at high temperatures are required. The resulting RGO sample was characterized by elemental analysis, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, Brunauer–Emmett–Teller measurement, thermo gravimetric analysis, Fourier transform infrared spectroscopy, solid state nuclear magnetic resonance spectroscopy, and conductivity measurement. It exhibits excellent conductivity and possesses a high specific surface area. This reduction method was successfully applied for the fabrication of inkjet-printed RGO devices on a flexible substrate.  相似文献   

20.
Nitrogen (N)-doped graphene (NG) sheets were prepared using (NH4)2CO3 and an aqueous dispersion of graphene oxide (GO) by an eco-friendly hydrothermal reaction. The in situ produced ammonia played an important role in the simultaneous nitrogen doping, the reduction and exfoliation of GO. The (NH4)2CO3/GO mass ratio and reaction temperature were varied to investigate the effects on the N doping level. The elemental analysis determined from the X-ray photoelectron spectroscopy showed that the nitrogen content of the NG was about 10.1 at.% and the oxygen content decreased significantly due to the hydrothermal reduction of GO. The electrochemical performances of the NG sheets increased with increasing doped N content. The highest specific capacitance of 295 F g−1 at a current density of 5 A g−1 and the highest specific surface area of 412 m2 g−1 were observed with the sample processed at 130 °C. The retention of the specific capacitance was maintained at ∼89.8% after 5000 charge–discharge cycles. These results imply that NG sheets obtained by this simple eco-friendly approach are suitable for use in high performance energy storage electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号