首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of a Mg-rich epoxy primer for protection of AZ91D magnesium alloy   总被引:1,自引:0,他引:1  
A Mg-rich epoxy primer was prepared by adding pure magnesium particles to an epoxy coating. The coating properties were studied with electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. The open circuit potential measurements showed cathodic protection effect of the Mg-rich primer on AZ91D alloy. Cross scratch testing showed that the Mg-rich primer provided better protection for the substrate than original epoxy coating. The precipitation of Mg(OH)2 in the coating also provided some degree of barrier protection.  相似文献   

2.
ZnO particles were added in Mg-rich epoxy primer to improve the protection for AZ91D magnesium alloy. The well dispersed ZnO particles could play a role in electrical conduction instead of Mg particles, consequently the Mg–ZnO-rich primer exhibited good conductivity while the dissolution rate of Mg particles decreased. ZnO particles also improved physical crosslink density of the epoxy matrix, which could reduce defects and enhance the barrier property and adhesion of the coating. As the results, the epoxy primer with 40 wt.% Mg and 10 wt.% ZnO showed better protection and prolonged lifetime than the primer with 50 wt.% Mg.  相似文献   

3.
This paper is a continuation of our investigation into the characteristic dichotomy of Mg-rich primers between accelerated salt-fog testing and natural weathering. Our earlier study suggested that magnesium powder reacted with atmospheric CO2 to form a protective carbonate layer on its surface. In this study, magnesium powder was treated with aqueous carbonic acid to accelerate magnesium carbonate development. The treated magnesium powder was formulated into a Mg-rich primer and evaluated for its corrosion resistance. The Mg-rich primer formulated with the treated Mg powder performed better in the salt-fog test than the control primer based on untreated Mg powder.  相似文献   

4.
In the present study, the potential of poly(ether imide) as corrosion protective coating for magnesium alloys was evaluated using the spin coating technique. The influence of different parameters on the coating properties was evaluated and the corrosion behaviour of the coatings was investigated using electrochemical impedance spectroscopy. The best corrosion protection was obtained preparing the coatings under N2 atmosphere, using 15 wt.% solution in N′N′-dimethylacetamide (DMAc) which resulted in a coating of approximately 2 μm thickness, with an initial impedance of 109 Ω cm2 and of 105 Ω cm2 after 240 h of exposure to a 3.5% NaCl solution.  相似文献   

5.
A new Ce, Zr and Nb-based conversion coating was designed for AZ91 and AM50 magnesium alloys. The corrosion protection provided by this coating was evaluated by electrochemical measurements (polarization curves, electrochemical impedance spectroscopy) in Na2SO4 electrolyte, and accelerated atmospheric corrosion tests (humid, SO2 polluted air, and salt spray). Its chemical composition was characterized by X-ray photoelectron spectroscopy (XPS). Electrochemical measurements showed that Mg alloys treated during 24 h in the Ce-Zr-Nb conversion bath exhibit: (i) increased corrosion potential, (ii) decreased corrosion and anodic dissolution current densities, and (iii) increased polarization and charge transfer resistances. The accelerated corrosion tests revealed excellent atmospheric corrosion resistance for all Ce-Zr-Nb-treated samples, with or without an additional layer of epoxy-polyamide resin lacquer or paint. XPS analysis showed that the coating includes CeO2, Ce2O3, ZrO2, Nb2O5, MgO, and MgF2 as main components. No significant modification of the chemical composition was observed after cathodic and anodic polarization in Na2SO4. This new coating provides improved corrosion resistance, and excellent paint adhesion. It offers an alternative to the chromate conversion coating for magnesium alloys.  相似文献   

6.
Long-term anticorrosion behaviour of polyaniline on mild Steel   总被引:1,自引:0,他引:1  
Y. Chen  J. Li  J.L. Lu  F.S. Wang 《Corrosion Science》2007,49(7):3052-3063
Anticorrosion performances of polyaniline emeraldine base/epoxy resin (EB/ER) coating on mild steel in 3.5% NaCl solutions of various pH values were investigated by electrochemical impedance spectroscopy (EIS) for 150 days. In neutral solution (pH 6.1), EB/ER coating offered very efficient corrosion protection with respect to pure ER coating, especially when EB content was 5-10%. The impedance at 0.1 Hz of the coating increased in the first 1-40 immersion days and then remained constant above 109 Ω·cm2 until 150 days, which in combination with the observation of a Fe2O3/Fe3O4 passive film formed on steel confirmed that the protection of EB was mainly anodic. In acidic or basic solution (pH 1 or 13), EB/ER coating also performed much better than pure ER coating. However, these media weakened the corrosion resistance due to breakdown of the passive film or deterioration of the ER binder.  相似文献   

7.
Two types of PEO coatings were produced on AM50 magnesium alloy using pulsed DC plasma electrolytic oxidation process in an alkaline phosphate and acidic fluozirconate electrolytes, respectively. The phase composition and microstructure of these PEO coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion behaviour of the coated samples was evaluated by open circuit potential (OCP) measurements, potentiodynamic polarization tests, and electrochemical impedance spectroscopy (EIS) in neutral 0.1 M NaCl solution. The results showed that PEO coating prepared from alkaline phosphate electrolyte consisted of only MgO and on the other hand the one formed in acidic fluozirconate solution was mainly composed of ZrO2, MgF2. Electrochemical corrosion tests indicated that the phase composition of PEO coating has a significant effect on the deterioration process of coated magnesium alloy in this corrosive environment. The PEO coating that was composed of only MgO suffered from localized corrosion in the 50 h exposure studies, whereas the PEO coating with ZrO2 compounds showed a much superior stability during the corrosion tests and provided an efficient corrosion protection. The results showed that the preparation of PEO coating with higher chemical stability compounds offers an opportunity to produce layers that could provide better corrosion protection to magnesium alloys.  相似文献   

8.
Fe1−xMgx alloy films (with x ? 43.4 at.% Mg) were deposited by dc magnetron sputtering onto glass slide substrates. The objective of this study was to characterise the corrosion properties of these alloys in saline solution for application as new friendly environmentally sacrificial coatings in the protection of steel structures. The morphological and structural properties of the alloys were systematically studied prior to electrochemical experiments, and then the degraded surfaces were analysed to determine the composition and nature of corrosion products. Alloys with <25  at.% Mg were single-phase body-centred cubic (bcc) with enlarged lattice parameters, whereas for magnesium contents above 25 at.%, amorphisation occurred. The reactivity of the alloys in saline solution is strongly dependent on the Mg content and the alloy structure. The incorporation of magnesium leads to an open circuit potential shift of the alloy towards more negative values, that confers an attractive interest of these alloys as sacrificial coatings. A transition in corrosion activity is observed at 25 at.% Mg from which the reactivity decreases with the magnesium content increase. The evolution of the alloy corrosion behaviour is discussed in terms of structural and corrosion products evolution versus magnesium content.  相似文献   

9.
Magnesium alloy AZ91D was exposed in humid air at 95% relative humidity (RH) with a deposition of 70 μg/cm−2 NaCl. The corrosion products formed and the surface electrolyte were analysed after different exposure times using ex situ and in situ FTIR spectroscopy, X-ray diffraction and Ion Chromatography. The results show that magnesium carbonates are the main solid corrosion products formed under these conditions. The corrosion products identified were the magnesium carbonates hydromagnesite (Mg5 (CO3)4 (OH)24H2O) and nesquehonite (MgCO3 3H2O). The corrosion attack starts with the formation of magnesite at locations with higher NaCl contents. At 95% RH, a sequence of reactions was observed with the initial formation of magnesite, which transformed into nesquehonite after 2-3 days. Long exposures result in the formation of pits containing brucite (Mg(OH2)) covered with hydromagnesite crusts. The hydromagnesite crusts restrict the transport of CO2 and O2 to the magnesium surface and thereby favour the formation of brucite. Analysis of the surface electrolyte showed that the NaCl applied on the surface at the beginning was essentially preserved during the initial corrosion process. Since the applied salt was not bound in sparingly soluble corrosion products a layer of NaCl electrolyte was present on the surface during the whole exposure. Thus, Na+ and Cl ions can participate in the corrosion process during the whole time and the availability of these species will not restrict the atmospheric corrosion of AZ91D under these conditions. It is suggested that the corrosion behaviour of AZ91D is rather controlled by factors related to the microstructure of the alloy and formation of solid carbonate containing corrosion products blocking active corrosion sites on the surface.  相似文献   

10.
Corrosion resistance of zinc-magnesium coated steel   总被引:1,自引:0,他引:1  
A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn5Cl2(OH)8 · H2O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH)2) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH)2, which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature.  相似文献   

11.
In the present work the corrosion inhibitive role of Mg in Zn-Mg coatings is considered for different stages of corrosion. Corrosion product characterization was carried out using XRD, IRRAS, MEB-FEG-EDS on technical Zn-Mg coatings after various exposure times in a standardized cyclic corrosion test. The results are compared with artificial corrosion products obtained by chemical and electrochemical synthesis. The importance of the ageing and the role of the atmospheric CO2 on the nature and morphology of the corrosion products are discussed. The corrosion resistance of Zn-Mg alloy is correlated with the stabilization of simonkolleite against its transformation into smithsonite, hydrozincite, and zincite during ageing cycles in presence of CO2. The stabilization appears to be due to the preferential formation of magnesium carbonates. Thermodynamic modeling and titrometric analysis demonstrate that Mg2+ enhances simonkolleite during dry-wet cycling by (1) removing carbonate from the environment and thereby limiting of the transformation of simonkolleite into zincite, smithsonite, and hydrozincite and by (2) buffering the pH of the electrolyte around 10.2 due to the precipitation of Mg(OH)2 preventing the dissolution of zinc based corrosion products into soluble hydroxide complexes.  相似文献   

12.
H. Möller 《Corrosion Science》2007,49(4):1992-2001
The purpose of this study was to determine how magnesium in seawater influences the corrosion behaviour of freely corroding steel. This was done by studying if Mg(OH)2 is formed and if calcite and aragonite differ in their protective properties. No Mg(OH)2 was detected after immersion of steel in a Mg2+-containing artificial seawater. Magnesium seems to influence the corrosion behaviour of freely corroding steel by causing calcium carbonate to precipitate as aragonite. Aragonite is more effective in covering the surface than calcite and is therefore more functional in preventing oxygen from reaching the steel surface, thereby lowering the corrosion rate.  相似文献   

13.
A novel anti-corrosion sol–gel based Al2O3 coating was developed on the AZ91D magnesium alloy. The morphology, microstructure and composition of the coatings were investigated by scanning electron microscope coupled with energy dispersive spectroscopy, Fourier transform infrared spectrum analysis, X-ray diffraction, thermo-gravimetric and differential thermal analysis. The corrosion resistance of the coatings in 3.5 NaCl wt.% solution was studied using electrochemical measurements. The results demonstrated that a homogeneous Al2O3 coating could be obtained and the sol–gel coated samples sintered at 380 °C had the best corrosion resistance properties as compared to the specimens sintered at 120 and 280 °C.  相似文献   

14.
Mg-based materials are especially attractive as biodegradable implants, although they degrade so fast in physiological media that corrosion protection is needed. In this work, biodegradation kinetics of powder metallurgy Mg, cast Mg and AZ31 alloy were evaluated by EIS measurements in cell culture medium (DMEM), which simulates closely the physiological media. To reduce their degradation rate, a chemical conversion treatment in HF was applied to form MgF2 coatings. Results confirmed that this coating slows down the biodegradation rate, especially when formed on cast Mg and AZ31, retarding the corrosion process in the cell culture medium for at least a week.  相似文献   

15.
This study investigated the effect of antimony, bismuth and calcium addition on the corrosion and electrochemical behaviour of AZ91 magnesium alloy in 3.5% NaCl solution. Techniques including constant immersion, electrochemical potentiodynamic polarisation, scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) were used to characterise electrochemical and corrosion properties and surface topography. It was found that corrosion attack occurred preferentially on Mg3Bi2 and Mg3Sb2 particles while Mg17Al8Ca0.5 and Mg2Ca phases showed no detrimental effect on corrosion. Combined addition of small amounts of bismuth and antimony to the AZ91 alloy resulted in significant increase in corrosion rate.  相似文献   

16.
By a two-step fabrication process of electrolytic deposition and annealing treatment, an MgO/ZrO2 duplex-layer coating has been prepared on AZ91D magnesium alloy as a protective film against corrosion. Owing to the chemical bonding formed after the condensation of precursory hydroxides, the adhesion strength, thickness and compactness of MgO coating on the substrate are significantly enhanced by the intermediate ZrO2 layer which prevents the formation of corrosion product Mg2(OH)3Cl·4H2O. As a result, the MgO/ZrO2 duplex-layer coated specimen reveals relatively high corrosion resistance and superior stability in 3.5 wt% NaCl solution with respect to the MgO single-layer coated specimen.  相似文献   

17.
Polyaniline (PANI) coatings were electrochemically deposited on substrates of stainless steel and platinum in solutions of 0.2 M H2SO4 and 0.1 M aniline by cyclic voltammetry. The corrosion protection of the PANI coatings and their failure were investigated in 0.2 M H2SO4 solution. It was observed that the corrosion protection ability of the coating to steel substrate was increased with the increase of the coating thickness. The corrosion protection ability was mainly attributed to the passivating effect of PANI due to its oxidizing ability in its emeraldine state. During its operation, the PANI coating in emeraldine state tended to gradually lose its corrosion protection ability. This gradual failure of the PANI coating, but faster than expected, was confirmed to be related to a gradual reduction of the emeraldine PANI and a gradually increased resistance between the PANI coating and the stainless steel substrate. These findings lead to a new mechanism for the corrosion protection of PANI coating and its failure.  相似文献   

18.
The corrosion behavior of Mg–Y–Nd–Zr (WE43 commercial alloy) was investigated in Na2SO4 electrolyte using potentiodynamic polarization curves, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) depth profiles, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyzes. SEM and EDS data show that Nd-rich precipitates are mainly located at the grains boundaries. Zr/Y-rich zones are distributed inside the most of the grains. XPS study indicates a depletion of Mg on surface that could be attributed to Mg dissolution and an enrichment of the addition element oxides. XPS and ToF-SIMS analyzes demonstrate that the corrosion films are made up of a magnesium hydroxide (Mg(OH)2) outer layer and an inner layer containing magnesium oxide (MgO), yttrium oxide (Y2O3) and hydroxide (Y(OH)3), mixed with a small amount of MgH2, zirconium oxide (ZrO2) and neodymium oxide (Nd2O3). The Y2O3 and Y(OH)3 signals increase slightly in the inner layer towards the corrosion film/alloy interface. Unlike these compounds, ZrO2 and Nd2O3 compound signals are constant inside the inner layer. It is concluded that: (i) neodymium, zirconium and yttrium play a key role in the slightly improved corrosion resistance of the alloy and (ii) the cathodic reaction is slower on WE43 than on pure Mg and AZ91.  相似文献   

19.
A self-healing corrosion protective coating was developed using TiO2 particles and casein as pH-sensitive organic agents that is also environmentally friendly materials. A film structured of TiO2 particles was formed on a substrate (magnesium alloy) by dip-coating followed by immersion in a casein solution. Casein was inserted and fixed in the particle film by changing the pH of the casein solution. The polarization resistance of the scratched specimen prepared by changing the pH of the solution from 12 to 5 increased with testing time, and a deposited film consisting of TiO2 particles and casein was observed after the test.  相似文献   

20.
A duplex-layered phosphate conversion coating was obtained on AZ31 Mg alloy by substituting NaF bath with a citric bath. The morphology, composition and corrosion resistance of the coating were investigated using SEM, EDS, SPM and electrochemical methods. A three-stage mechanism for initial formation of the coating was proposed: Dissolution of the loose oxide film and deposition of Mg3(PO4)2 and AlPO4, formation of a composite intermediate layer of Mg3(PO4)2, AlPO4 and Mg(OH)2, and deposition of manganese phosphate nuclei followed by growth and lamination of the nuclei. The nuclei preferentially deposit at the Al–Mn phase surface and near the grain boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号