首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Polypyrrole (PPy) films were electrochemically synthesized on AA6082, AA5083 and AA2024 Al alloys by a two-step galvanostatic procedure: (1) activation in nitric acid and (2) deposition in oxalic acid. PPy films were characterized by elemental analysis, cyclic voltammetry, SEM/EDX, RAIR, solid-state 13C NMR, and EPR. The corrosion behaviour of PPy-coated alloys was evaluated in near neutral NaCl solution by single-cycle anodic polarization and open circuit potential monitoring. Film adhesion and polymer structure are principally determined by the nature of the Al substrate. Good quality films are obtained on the most reactive AA5083 and AA2024, while highly degraded, partially saturated polymer is electrogenerated on AA6082. The performance of PPy films was observed to depend strongly on the electrochemical test used for corrosion protection evaluation. Accordingly, the rate at which structural changes are driven within the polymeric matrix is of paramount importance to understand the corrosion inhibition properties of conducting polymers.  相似文献   

2.
The electrochemical synthesis of polystyrenesulphonate (PSS) doped polypyrrole (PPy) film onto aluminium alloy (AA 2024-T3) under galvanostatic conditions at current densities of 1 mA cm?2 was studied. In this study, conductive atomic force microscopy (C-AFM) was performed to investigate the electrical properties of PPy film on AA 2024-T3 depending on the concentration of PSS as dopant and nitric acid as electrolyte during electrochemical synthesis. The addition of HNO3 to aqueous electrolyte solution is found to allow the electrochemical synthesis of well adhering homogeneous PPy film in the presence of PSS on AA 2023-T3. The PPy film in the presence of nitric acid alone can be synthesised, although this film showed the poor quality of the electrical properties of PPy film. According to C-AFM, the study confirmed that the conductivity of PPy film is significantly increased with increasing the PSS, nitric acid concentration and electrochemical deposition time.  相似文献   

3.
The effects of a pretreatment process on the formation and properties of lanthanum based conversion coatings on AA2024-T3 was investigated using optical and scanning electron microscopy (SEM), X-ray diffraction (XRD) and open circuit potential (OCP) measurements. The results indicate that the conventional alkaline activation pretreatment with acidic desmutting could not create a suitable condition to produce lanthanum based conversion coating on AA2024-T3. Therefore, in this study, a new approach to produce lanthanum based conversion coating on AA2024-T3 by acidic pretreatment is proposed. The pretreatment of the alloy in acidic and chloride environments (90 s at 30 vol % HCl) creates more cathodic sites on AA2024-T3 compared to alkaline activation with acidic desmutting. Additionally, it was found that the formation stages of lanthanum based conversion coating is similar to those of cerium based conversion coating on AA2024-T3 except lanthanum ions require more localized pH increase to deposit on the alloy.  相似文献   

4.
This work aims at obtaining comprehensive information on the corrosion behaviour of AA2024-T3 in oxalic acid solutions under different concentrations (0.007–0.2?M) and pH (2–6). Various tests to characterise the corrosion behaviour are performed, including weight loss and electrochemical tests. Coupon surfaces are examined using infinite-focus microscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, Raman spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy. Corrosion rates, anodic and cathodic reaction kinetics are detailed to provide a fundamental understanding of the electrochemical behaviour of AA2024-T3 as a function of pH and oxalate concentration. The synergistic effect of pH and oxalate concentration on corrosion of AA2024-T3 is evaluated for both AA2024-T3 matrix and main intermetallics (i.e. Al–Cu–Mg and Al–Cu–Fe–Mn) and the electrochemical behaviour of each constituent element in AA2024-T3 is systematically studied.  相似文献   

5.
用电化学方法和腐蚀失重法研究了 2024Al和SiCp/2024Al复合材料在 3.5%NaCl水溶液中的耐蚀性,用电化学阻 抗技术对它们的硫酸阳极氧化膜保护性进行了跟踪评价.结果表明SiCp/2024Al在 3.5%NaCl水溶液中比 2024Al有较大的 腐蚀敏感性.2024Al表面的阳极氧化膜,经热水封闭后,可提供相当好的保护作用.热水封闭的Sip/2024Al阳极氧化膜, 具有良好的耐 NaCl溶液腐蚀能力,由于氧化膜中SiC颗粒的存在破坏了氧化膜的完整性和均匀性,故其耐蚀性不如 2024 Al 合金的阳极氧化膜.  相似文献   

6.
The role of pre-treatment in the formation of a cerium conversion coating is investigated for the protection of AA2024-T3 and 7075-T6 alloys. The alloys were alkaline-etched and de-smutted in nitric acid, prior to cerium treatment in Ce(NO3)3 at 85 °C with H2O2 accelerator. Potentiodynamic polarization studies in 3.5% NaCl solution revealed a large shift of  300 mV of the corrosion potential below the pitting potential for the 7075-T6 alloy, which correlated with the development of a finely-textured, uniform coating. However, the formation of a uniform coating and protection was dependent upon the time of de-smutting, with non-uniform coatings resulting from extended times of de-smutting. In contrast, non-uniform coatings developed on the 2024-T3 alloy, with pitting potential at the corrosion potential, irrespective of the time of de-smutting. Findings for the 2024-T3 alloy indicate that extended de-smutting affects the enrichment of alloying elements.  相似文献   

7.
Cerium malate (CeMal) was tested as a corrosion inhibitor for AA2024-T3 in this work. Corrosion inhibition on bare AA2024-T3 indicated that the inhibiting effect was a result of the synergistic effect of cerium cations and maleic anions. The corrosion of AA2024-T3 was stagnated by greatly reducing the corrosion current when CeMal was present in NaCl solutions. CeMal was adsorbed on the surface of AA2024-T3 forming a protective film in the initial stage. Then, cerium cations transformed to cerium oxide/hydroxides, precipitating on the cathode sites to inhibit the further corrosion. The electrochemical impedance spectra results of the sol-gel coatings proved that CeMal was an effective corrosion inhibitor in the sol-gel coatings to provide corrosion protection for AA2024-T3.  相似文献   

8.
Danqing Zhu 《Corrosion Science》2003,45(10):2163-2175
This study consists of two parts. In the first part, the corrosion of 2024-T3 aluminum alloy (AA 2024-T3) was studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results showed that the anodic S phase (Al2CuMg) particles dealloyed Al and Mg during the 3.5 h of immersion in a neutral 0.6 M sodium chloride (NaCl) solution; with the dealloying of Mg being the most severe. Simultaneously, a heavy dissolution was also observed for the surrounding Al matrix of the S phase particles. This Al dissolution is likely to be caused by a local alkalization resulting from the coupled cathodic reaction (water and/or oxygen reduction). Such corrosion in AA 2024-T3, however, can be inhibited efficiently after the treatment of bis-[3-(triethoxysilyl)propyl]tetrasulfide (bis-sulfur silane). The associated studies on bis-sulfur silane treated AA 2024-T3 will be presented in the second part.  相似文献   

9.
The mechanism of deposition of cerium-based conversion coatings and the influence of Al3+ ions was modeled using titrations of cerium-based conversion coating solutions with and without added Al3+ ions. Precipitates resulting from these titrations were characterised by Raman spectroscopy and thermogravimetric analysis. Cerium peroxo species and precipitated aluminium compounds were detected in the precipitates. The titrations indicated that cerium and aluminium compounds precipitate independently. The coating deposited onto AA2024-T3 was studied using Raman spectroscopy and optical and scanning electron microscopy. Similar species were observed to those in the precipitates. Changes to the properties of the coating during ageing were monitored using contact angle measurements and Raman spectroscopy. A model is presented that proposes a mechanism for the deposition of the coating over the matrix of AA2024-T3.  相似文献   

10.
Heming Wang  Robert Akid   《Corrosion Science》2007,49(12):4491-4503
The inherent reactivity of the Al–Cu alloys is such that their use for structural, marine, and aerospace components and structures would not be possible without prior application of a corrosion protection system. Historically these corrosion protection systems have been based upon the use of chemicals containing Cr(VI) compounds. Organic–inorganic hybrid silane coatings are of increasing interest in industry due to their potential application for the replacement of current toxic hexavalent chromate based treatments. In the present study, a hybrid epoxy–silica–alumina coating with or without doped cerium nitrate has been prepared using a sol–gel method. The hybrid coatings were applied by a dip-technique to an Al–Cu alloy, Al 2024-T3, and subsequently cured at room temperature. The anticorrosion properties of the coatings within 3.5% NaCl were studied using electrochemical impedance spectroscopy (EIS), and conventional DC polarisation. An exfoliation test method involving immersion in a solution of 4 M NaCl, 0.5 M KNO3 and 0.1 M HNO3 was also used. The cerium nitrate doped sol–gel coating exhibited excellent anticorrosion properties providing an adherent protection film on the Al 2024-T3 substrate. The resistance to corrosion of the sol–gel coating was also evaluated by analysing the morphology of the coating before and after corrosion testing using scanning electron microscopy.  相似文献   

11.
The aim of this study was to investigate the transition of wear behavior for pure aluminum and extruded aluminum alloy 2024-T4 (AA2024-T4). The wear test was carried using a ball-on-disc wear testing machine at various vertical loads and linear speeds. The transition of wear behaviors was analyzed based on the microstructure, wear tracks, wear cross-section, and wear debris. The critical wear rates for each material are occurred at lower linear speed for each vertical load. The transition of wear behavior was observed in which abrasion wears with the generation of an oxide layer, fracture of oxide layer, adhesion wear, severe adhesion wear, and the generation of seizure occurred in sequence. In case of the pure aluminum, the change of wear debris occurred in the order of blocky, flake, and needle-like debris. Cutting chip, flake-like, and coarse flake-like debris was occurred in sequence for the extruded AA2024-T4. The transition in the wear behavior of extruded AA2024-T4 occurred slower than in pure aluminum.  相似文献   

12.
Danqing Zhu 《Corrosion Science》2003,45(10):2177-2197
The corrosion protection of AA 2024-T3 by films of bis-[3-(triethoxysilyl)propyl]tetrasulfide (bis-sulfur silane) was studied in a neutral 0.6 M NaCl solution using potential transient, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results showed that a highly crosslinked or dense interfacial layer that developed between the silane film and the aluminum oxide is the major contribution to the corrosion protection of AA 2024-T3. The formation of this interfacial layer heavily restricts pit growth underneath via retarding the transport of corrosion products, as well as effectively blocks a number of cathodic sites available for cathodic reactions.  相似文献   

13.
The mechanisms of corrosion inhibition of AA2024-T3 by vanadates were studied using chronoamperometry, polarization curves and adsorption isotherms. The electrochemical behaviour of clear solutions containing metavanadates and orange solutions containing decavanadates was clearly distinctive. Metavanadates reduced the kinetics of oxygen reduction to an extent similar to chromates. Corrosion inhibition of AA2024-T3 by metavanadates was very rapid and it might occur by the formation of an adsorbed layer. Reduction of clear metavanadate solution was very slow. Approximately 35 min were required to develop a monolayer of a reduced vanadate species. The adsorption of the inhibitor likely blocked reactive sites on intermetallic particles, discouraging the oxygen reduction reaction (ORR). Adsorption of the inhibitor on the Al matrix could also displace Cl ions, increasing the stability of the passive film and reducing the breakdown of S-phase particles. In contrast, decavanadates were shown to be poor inhibitors of the ORR. A sharp current spike was observed after injection of decavanadates for both Cu and AA2024-T3 at various applied cathodic potentials. Integration of the current peaks suggested the formation of several monolayers of a reduced vanadate species. The formation of several monolayers was in line with the poor performance of decavanadates as inhibitors of AA2024-T3 corrosion.  相似文献   

14.
In the present study, the effects of testing variables on stress corrosion cracking (SCC) susceptibility of Al 2024-T351 in 3.5% NaCl solution were examined using slow strain rate test (SSRT) method with controlled applied potentials and a constant load test (CLT) method. The SSRTs were conducted at various strain rates and applied potential, while the CLTs were performed with different exposure time, with different grain directions of ST (short-transverse) and L (longitudinal) to understand how the testing parameters affected on the SCC susceptibility of Al 2024-T351. The percent reductions in tensile elongation in an SCC-causing environment over those in air tended to express the SCC susceptibility of Al 2024-T351 most properly for both SSRT and CLT. The present fractographic examination suggested that both anodic dissolution and hydrogen embrittlement played a role in the SCC process of Al 2024-T351 in 3.5% NaCl solution at both anodic and cathodic applied potentials, and the contribution of each mechanism could vary with different testing variables. It was also found that the SCC susceptibility of Al 2024-T351 obtained from the CLT result could provide the similar SCC evaluation result obtained by SSRT with a proper selection of testing variables. The metallurgical aspect of SCC behaviour of Al 2024-T351 was also discussed based on the microstructural and fractographic examinations.  相似文献   

15.
A new method of preparing water‐based sol–gel containing titania nanoparticles for the protection of aluminum alloy AA2024 against corrosion was presented and performance of the coating in Harrison's solution was studied. The coating was prepared using alkoxysilanes, tetraethylorthosilicate (TEOS) and 3‐glycidoxypropyltrimethoxysilane (GPTMS), and in additional metal alkoxide, titanium(IV) tetrapropoxide (TPOT), as a source of titania particles. Poly(ethylene imine) (PEI) polymer was utilized to create cross‐linking and also to improve the coating quality. In addition, the molar ratios and amount of components and factors affecting performance were assessed to improve coating properties and its performance. Potentiodynamic scan (PDS) and electrochemical impedance spectroscopy (EIS) measurements were performed to evaluate the corrosion protection performance of coatings. Also, scanning electron microscopy (SEM) was employed to investigate surface morphology. The stability of the best prepared coating and its corrosion protective effects on the alloy were evaluated in Harrison's solution up to 15 days. The results revealed that this new sol–gel coating provides significant protection against corrosion of the AA2024 alloy in Harrison's solution.  相似文献   

16.
In this paper, the performance of bis-1, 2-(triethoxysilyl) ethane (BTSE) as a pre-treatment to protect the AA 2024-T3 against corrosion has been investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curves, and the scanning vibrating electrode technique (SVET). The microstructural and morphological characterizations were carried out via scanning electron microscopy and atomic force microscopy and the chemical composition evaluated using contact angle measurements and X-ray photoelectron spectroscopy (XPS). The electrochemical results showed that the additives improved the anticorrosion properties of the coating. The chemical characterization indicated that additives contribute to an increased degree of surface coverage, as well as to a more complete reticulation. The SVET results evidenced the self-healing abilities of Ce ions.  相似文献   

17.
An Al 2024 (AA2024-T351) alloy having less Mg and a higher proportion of Cu to Mg (mass ratio ≈3.7) has been characterised to provide input data for microscale and macroscale corrosion models. The Al 2024 alloy microstructure has a significant presence of nanoscale dispersoid and microscale AlCuFeMnSi (2nd phase) intermetallic particles, but a smaller population of microscale S phase (Al2CuMg) and θ phase (Al2Cu) intermetallic particles. Microscale electrochemical data show that pitting potential (SCE) values for 2nd phase, S phase, or matrix overlap significantly. The localised corrosion susceptibility is affected by S and inhomogeneous 2nd phase particles.  相似文献   

18.
The present work aims at evaluating the anti-corrosion behaviour of a novel pre-treatment based on bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) doped with cerium nitrate for application on hot dip galvanised steel and AA2024-T3 substrates. The corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS) and by the scanning vibrating electrode technique (SVET), during immersion in NaCl solutions. The electrochemical results showed that the pre-treatment provides excellent corrosion protection to the substrates. Furthermore, the results evidenced improved protection comparatively to the use of undoped BTESPT pre-treatments, both for galvanised steel and AA2024-T3. This improvement is most likely due to enhanced barrier properties of the film and additional active corrosion protection originated from the inhibiting action of the cerium-based inhibitor impregnated in the silane matrix.  相似文献   

19.
Corrosion protection arising from epoxy coatings incorporating lignosulfonate-doped polyaniline (Pani-LGS) upon AA2024-T3 was studied in 0.6 M NaCl. Synthesized Pani-LGS particles were investigated using TEM, FTIR, TGA and conductivity, whilst coatings were also physically examined using SEM. The coating performance was studied using a combination of potentiodynamic polarisation, EIS, FTIR spectroscopy and X-ray photoelectron spectroscopy. The performance of Pani-LGS/epoxy blends is discussed more generally, with tests revealing that on exposure to 0.6 M NaCl solution for 30 days, a 5 wt% Pani-LGS/epoxy coating resulted in low levels of corrosion. A mechanism for the postulated mode of corrosion protection is presented.  相似文献   

20.
In Part I it was demonstrated that the deposition of Ce-based conversion coatings onto the matrix of AA2024-T3 was well modeled by titrations of the Ce-coating solution with added Al3+ ions. In Part II the coating composition over the surface was imaged with Raman spectroscopy and X-ray elemental mapping. Multivariate analysis was used to interpret variance in the X-ray elemental maps. The coating composition was found to be determined by the underlying microstructure of the alloy. The microstructure is dominated by the distribution of Cu resulting from enrichment as a consequence of anodic etching of the matrix and dealloying of intermetallic particles, principally Al2CuMg during coating. A model is presented that proposes two mechanisms for the deposition of the coating. For the matrix, coating deposition can be explained on the basis of a pH rise in the adjacent solution analogous to precipitation from solution during titration as described in Part I. For the rest of the coating, the mechanism of deposition is dictated by the heterogeneous surface of AA2024-T3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号