首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纤维与树脂的界面对复合材料的整体力学性能有着显著的影响。基于NOL环的宏观力学测试一般被用来反映复合材料的界面粘结性能,因此适用于评价纤维与树脂之间的宏观力学性能匹配性。为了探究高性能碳纤维T700SC、T800HB及高强玻璃纤维与环氧树脂的宏观力学性能匹配性,本研究首先根据GB/T 1458—2008国家标准制备NOL环试样,再借助NOL环的拉伸和层间剪切强度测试分析了高性能纤维与环氧树脂不同匹配组合宏观力学性能差异的原因,并寻找出最佳匹配组合。结果表明:玻璃纤维与环氧树脂的界面存在最佳的粘结强度,而且不同粘结强度导致拉伸强度和破坏机理不同,而碳纤维复合材料界面性能较差,容易分层破坏;T800HB与环氧树脂的宏观力学匹配性优于T700SC,环氧树脂力学性能、碳纤维的表面微观结构与性质以及环氧树脂与碳纤维之间的相互作用关系是影响界面粘结性能的根本原因。该研究在高性能纤维单向复合材料的材料选择与设计方面具有现实意义。  相似文献   

2.
A carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube (CF–POSS–CNT) hybrid reinforcement was prepared by grafting CNTs onto the carbon fiber surface using octaglycidyldimethylsilyl POSS as the linkage in an attempt to improve the interfacial properties between carbon fibers and an epoxy matrix. X-ray photoelectron spectroscopy, scanning electron microscopy, dynamic contact angle analysis and single fiber tensile testing were performed to characterize the hybrid reinforcements. Interlaminar shear strength (ILSS), impact toughness, dynamic mechanical analysis and force modulation atomic force microscopy were carried out to investigate the interfacial properties of the composites. Experimental results show that POSS and CNTs are grafted uniformly on the fiber surface and significantly increase the fiber surface roughness. The polar functional groups and surface energy of carbon fibers are obviously increased after the modification. Single fiber tensile testing results demonstrate that the functionalization does not lead to any discernable decrease in the fiber tensile strength. Mechanical property test results indicate the ILSS and impact toughness are enhanced. The storage modulus and service temperature increase by 11 GPa and 17 °C, respectively. POSS and CNTs effectively enhance the interfacial adhesion of the composites by improving resin wettability, increasing chemical bonding and mechanical interlocking.  相似文献   

3.
A high-toughness epoxy has been prepared using carboxyl-terminated butadiene acrylonitrile (CTBN) as a toughening agent to modify the AG-80 epoxy resin. High-performance carbon fiber/epoxy (CF/EP) composites are fabricated using the CTBN-toughened epoxy resin as the matrix and two types of CF, namely, T800SC and T800HB, as reinforcement. The mechanical properties of the matrix, surface properties of the CFs, tensile properties, and fracture morphologies of the composites are systematically investigated to elucidate the key factors influencing interfacial bonding in high-performance CF/EP composites. The results reveal that the most significant improvement in toughness is achieved when the CTBN content is 6.90 wt.% in the epoxy resin. Owing to the high content of polar functional groups and excellent surface wettability of T800SC, the T800SC/EP composite exhibits superior mechanical properties compared with the T800HB/EP composite.  相似文献   

4.
Interests in improving poor interfacial adhesion in carbon fiber‐reinforced polymer (CFRP) composites has always been a hotspot. In this work, four physicochemical surface treatments for enhancing fiber/matrix adhesion are conducted on carbon fibers (CFs) including acid oxidation, sizing coating, silane coupling, and graphene oxide (GO) deposition. The surface characteristics of CFs are investigated by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, interfacial shear strength, and interlaminar shear strength. The results showed that GO deposition can remarkably promote fiber/matrix bonding due to improved surface reactivity and irregularity. In comparison, epoxy sizing and acid oxidation afford enhancement of IFSS owing to effective molecular chemical contact and interlocking forces between the fiber and the matrix. Besides, limited covalent bonds between silane coupling and epoxy matrix cannot make up for the negative effects of excessive smoothness of modified CFs, endowing them inferior mechanical properties. Based on these results, three micro‐strengthening mechanisms are proposed to broadly categorize the interphase micro‐configuration of CFRP composite, namely, “Etching” “Coating”, and “Grafting” modifications, demonstrating that proper treatments should be chosen for combining optimum interfacial properties in CFRP composites. POLYM. ENG. SCI., 59:625–632, 2019. © 2018 Society of Plastics Engineers  相似文献   

5.
Carbon fiber‐reinforced epoxy composites, with incorporated carboxylic multiwall carbon nanotubes (CNTs), were prepared using vacuum‐assisted resin infusion (VARI) molding, and the in‐plane and out‐of‐plane properties, including mode‐I (GIc) and mode‐II (GIIc) interlaminar fracture toughness, interlaminar shear strength (ILSS), tensile, and flexural properties were measured. A novel spraying technique, which sprays a kind of epoxy resin E20 with high viscosity after spraying the CNTs, was adopted to deposit the CNTs on the surface of carbon fiber fabric. The E20 was used to anchor CNTs on the fabric surface, avoiding that the deposited CNTs were removed by the infusing resin during VARI process. The spraying processing, including spraying amount and spraying sequence, was optimized based on the distribution of CNTs on the fibers. After that, three composite specimen groups were fabricated using different carbon fiber fabrics, including as‐received, CNT‐deposited with E20, and CNT‐deposited without E20. The effects of CNTs on the processing quality and mechanical properties of carbon fiber‐reinforced polymer composites were studied. The experimental results show that all studied laminates have uniform thickness with designed values and no obvious defects form inside the laminates. Compared with the composite without CNTs, depositing CNTs with E20 increases by 24% in the average propagation GIc, by 11% in the propagation GIIc and by 12% in the ILSS, while it preserves the in‐plane mechanical properties, However, depositing CNTs without E20 reduces interlaminar fracture toughness. These phenomena are attributed to the differences in the distribution of CNTs and the fiber/matrix interfacial bonding for different spraying processing. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

6.
Yizhuo Gu  Min Li  Ji Wang  Zuoguang Zhang 《Carbon》2010,48(11):3229-3235
The interphase of fiber reinforced polymer composites is a narrow region around the fiber, and the mechanical performance of a composite strongly depends on the properties of the interphase. The interphase of carbon fiber reinforced polymer composites (CFRPs) is difficult to quantitatively characterize because of its nanometer dimension. To solve this problem, we present a nanomechanical imaging technique for mapping the dynamic mechanical property around the interphase region in CFRPs, and for providing nanoscale information of the interfacial dimension. The experimental results show that this method can determine the width and topography of the interphase with nanoscale lateral resolution, based on the storage modulus profile on the cross section of the composite. The average interphase thicknesses of a T300 carbon fiber/epoxy resin composite and a T700 carbon fiber/bismaleimide resin composite are 118 nm and 163 nm, respectively, and the size of interphase is uneven in width and “river-like”, which is consistent with the surface topography of the carbon fibers. Furthermore, the effect of water-aging on the interphase of the T300/epoxy composite was analyzed using the in situ imaging technique. An increase in the interphase width and interface debonding were revealed, implying a degradation in the interphase region.  相似文献   

7.
Multiwalled carbon nanotubes (MWNTs) were functionalized with pyrogallol. The functionalized MWNTs were well‐dispersed in the epoxy/curing agent/ethanol solution, as demonstrated by UV‐vis spectra and optical micrographs. Epoxy resin/MWNTs composites were prepared via solution mixing method. The cure behavior was characterized using differential scanning calorimetry. Pyrogallol‐functionalized carbon nanotubes (CNTs) reacted with the epoxy through the mediation reaction of pyrogallol with the curing agent, leading to the interfacial bonding between the functionalized carbon nanotubes (CNTs) and the resin matrix. Due to the excellent dispersion and interfacial bonding, the mechanical strength and electrical conductivity of the epoxy resin/CNTs composites have been improved. POLYM. ENG. SCI. 56:1079–1085, 2016. © 2016 Society of Plastics Engineers  相似文献   

8.
In this work, the effects of carbon nanotube-modified epoxy and carbon nanotube-enriched sizing agent on the tensile properties and failure mode of unidirectional carbon fiber/epoxy composites were investigated. Laminates of carbon fiber/epoxy composites at different concentrations of carbon nanotube and sizing agent were fabricated by hand layup vacuum bagging process. Scanning electron microscopy analysis was conducted to unveil the relation between the macroproperties and the composites’ microstructure. Experimental results showed that the carbon nanotube-modified epoxy/carbon fiber composite showed 20% enhancements in the Young’s modulus compared to the pristine epoxy/carbon fiber composite. The scanning electron microscopy analysis of the fracture surfaces revealed that incorporating carbon nanotube into the epoxy matrix with utilizing the vacuum improves the interfacial bonding and minimizes the voids that act as crack initiators. This microstructure enhances the interfacial shear strength and load transfer between the matrix and the fabrics and consequently the tensile characteristics of the formulated composite.  相似文献   

9.
A novel electrochemical grafting of carbon nanotubes (CNTs) on the surfaces of carbon fibers using water as dispersive medium was achieved by the electrolysis of carboxylic acid-functionalized CNTs. The resulting CNT-hybridized carbon fibers showed a selective distribution of CNTs at active carbon sites on the fibers associated with the edge graphite layers and defects, without destroying the crystalline structure of carbon fibers. Such hybridized fibers should provide a potential for improving the mechanical properties of advanced composites by increasing the load transfer at fiber/matrix interfaces.  相似文献   

10.
Graphene oxide (GO) was used to modify the surface of carbon fiber layers through electrophoretic deposition, forming a multiscale reinforcement fabric. By adjusting the experimental parameters, the resulting GO‐carbon fabric showed productive and homogenous distribution of thin and less‐agglomerate GO platelets on carbon fiber surface, remarkably enlarging the surface area and roughness of carbon fabric. To investigate the effect of GO sheets on composites, GO‐carbon fabric and carbon fabric‐reinforced hierarchical epoxy resin composites were respectively manufactured. Mechanical tests demonstrated that after introducing GO flakes on carbon fabric, both the flexural strength and interlaminar shear strength of composite had achieved an increase, especially the interlaminar shear strength rising by 34%. Through fractography analysis, it was found that in pure carbon fabric‐reinforced epoxy composite, the fiber/matrix debonding fracture mechanism predominated, while after the GO decoration on carbon fiber surface, the composite featured a stronger interfacial bonding, leading to the enhancement in mechanical properties of hierarchical epoxy resin composite. POLYM. COMPOS., 37:1515–1522, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
为了解碳纤维表面性能对纤维-树脂界面黏结强度的影响,使用扫描电镜、原子力显微镜与X射线光电子能谱仪(XPS),对国产T-300级碳纤维、台丽TC36S碳纤维、东丽T700S碳纤维的表面进行物理与化学表征,得出:国产碳纤维与TC36S碳纤维表面形貌相近,而T700S表面比较光滑;XPS定量分析技术表明3种碳纤维表面的活性差异较大,碳纤维与树脂的界面黏结强度随纤维粗糙度和表面活性官能团而变化。  相似文献   

12.
Functional groups on the surface of Polyacrylonitrile (PAN)‐based carbon fibers and in fiber surface sizing are likely to react during the curing process of composites, and these reactions could affect the infiltration and adhesion between the carbon fibers and resin. T300B‐3000‐40B fibers and fiber surface sizing were heat‐treated at different temperatures, and the structural changes of both the fiber surface sizing and extracted sizing after heat treatment were investigated by Fourier transform infrared spectroscopy. The results show that the concentration of epoxy groups in both the fiber surface sizing and extracted sizing decreased with increasing heat‐treatment temperature and decreased to zero after treatment at 200°C. The concentration of epoxy groups in the extracted sizing was lower than that of the fiber surface sizing after treatment under the same conditions; this indicated that the rate of reaction between the carbon fibers and fiber surface sizing was higher than the reaction rate of the fiber surface sizing system. X‐ray photoelectron spectroscopy analysis reveals that the content of C? O bonds and activated carbon atoms on the surface of the desized treated carbon fibers was the highest when the heat‐treatment temperature was 150°C; this proved the reaction between the carbon fibers and the fiber surface sizing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
A liquid sizing agent containing multiwall carbon nanotubes (MWCNTs) was prepared for carbon fiber (CF) reinforced methylphenylsilicone resin (MPSR) composite applications. In order to improve the dispersion of MWCNTs in the sizing agent and interfacial adhesion between CF and MPSR, MWCNTs and CF were functioned by the chemical modification with tetraethylenepentamine (TEPA) used as a MPSR curing agents. The CF before and after the sizing treatment-reinforced MPSR composites were prepared by a compression molding method. The microstructures, interfacial properties, and impact toughness of CF were systematically investigated. Experimental results revealed that a thin layer of MPSR coating containing functionalized MWCNTs (MWCNT-TEPA) was uniformly grafted onto the surface of CF. The sized CF-reinforced MPSR composite showed simultaneously remarkable enhancement in the interlaminar shear strength and impact toughness. Meanwhile, the tensile strength of CF had no obvious decrease after sizing treatment. In addition, the interfacial reinforcing and toughening mechanisms were also discussed. We believe that the facile and effective method in preparing multifunctional fibers provides a novel interface design strategy of carbon fiber composites for different applications.  相似文献   

14.
The changes in interfacial fracture energy of three kinds of commercially sized carbon fiber (CF)/epoxy resin composites in the range from ambient temperature to 130°C were investigated using the single‐fiber fragmentation test to evaluate the heat resistance of the interphase. The effects of CF sizing on the interfacial bonding property were studied using desized CF/epoxy resin composites. Thermogravimetric analysis and differential scanning calorimetry of the combination of sizing and matrix were employed to investigate the role of sizing on the variations in the fiber/matrix interfacial property under elevated temperature. The interfacial fracture energy values of all the studied CF composites were found to decrease quickly during the initial stage of temperature rise and drop gradually at higher temperature. At elevated temperature, the desized CF composites had higher heat resistance than the corresponding sized fiber composites. The differences in the interfacial heat resistance among the three kinds of CF composites and the difference in the interfacial thermal stability between the sized and the desized fiber composites were related to different glass transition temperatures of the interphases. The interaction between sizing and the matrix and the chain motion of the crosslink structure of the interphase has been suggested to determine the interfacial heat resistance. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
制备出了短切碳纤维增强TDE-85环氧树脂复合材料,研究了碳纤维的含量对复合材料力学性能和耐热性能的影响。结果表明,碳纤维的加入有利于复合材料力学性能和耐热性能的提高,并在碳纤维含量为0.25%时,复合材料的拉伸强度、冲击韧性、弯曲强度和弯曲模量达到最大,分别提高了29.33%、25.31%、30.28%和68.93%。此外,对复合材料的弯曲断裂面进行了微观形貌分析,结果表明一定量的碳纤维可以较好地分散在树脂基体中,同时,碳纤维原丝和树脂基体的界面结合比较弱,主要依赖于两相之间的物理嵌合。  相似文献   

16.
Surface treatment of carbon fibers is essential to provide adequate interfacial interaction, and strength in carbon fiber/epoxy composites. The electrodeposition of a metallic copper coating on the carbon fiber surface has been examined as an alternative method to improve carbon fiber-epoxy interfacial properties. The wettability of the carbon fiber by the epoxy resin was improved as a result of copper electrodeposition. As a consequence, the adhesion between the carbon fiber and epoxy was also greatly improved by the surface electrolytic treatment used. The electrodeposition conditions affected significantly both wettability and adhesion phenomena. The electrolytic current had a strong effect on the interface performance. It was found that there was an intermediate electrolytic current, within the range used, which promoted better wetting and composite strength, compared with conventionally surface-oxidized carbon fibers.  相似文献   

17.
Electrophoretic deposition (EPD) was used to deposit carboxylic acid-functionalized carbon nanofibers (O-CNFs) on the surface of single carbon fibers. Using the single fiber fragmentation technique and Weibull analysis, interfacial shear strength (IFSS) was estimated for different fiber surface treatments. Samples for sized, unsized, O-CNF deposited sized, and O-CNF deposited unsized carbon fibers were tested. Additionally, the effects of EPD were investigated by testing sized and unsized carbon fiber samples exposed to an electric field in water. Removal of the fiber sizing decreased IFSS by approximately 27%, but addition of O-CNFs to the unsized fiber surface led to an increase of 15% compared to the sized base fiber. The O-CNF deposited sized fibers provided IFSS increases of 207.6% and 66.9% for 1 and 5 min deposition durations, respectively. The surface morphology of all samples was characterized, and those containing homogeneous deposition of closely bound O-CNFs provided the highest IFSS values. Exposing sized fibers to the electric field for 1 min led to an IFSS increase of 79%, while unsized fibers undergoing the same treatment provided increases of 7.7% and 46% compared to the base sized fiber and unsized fiber samples, respectively.  相似文献   

18.
环氧树脂上浆剂对PAN基碳纤维性能的影响   总被引:6,自引:0,他引:6  
分别以KD-213,YD-128环氧树脂、复合环氧树脂及油酸酰胺改性的复合环氧树脂(改性环氧树脂)为主体的上浆剂对聚丙烯腈基碳纤维(PANCF)进行上浆,对上浆纤维的加工性能、表面形貌及其界面剪切强度(IFSS)进行了研究。结果表明:上浆剂改善了PANCF的耐磨性、毛丝量、耐水性及其复合材料的IFSS。其中改性环氧树脂上浆剂为最佳,可在PANCF表面形成一层完整的柔韧性光滑薄膜,上浆后的PANCF的耐磨次数为1887,毛丝量为0.14mg,吸水率小于等于0.005%,复合材料IFSS较未上浆纤维提高38.5%,达87.26GPa。  相似文献   

19.
In this article, modification of carbon fiber surface by carbon based nanofillers (multi-walled carbon nanotubes [CNT], carbon nanofibers, and multi-layered graphene) has been achieved by electrophoretic deposition technique to improve its interfacial bonding with epoxy matrix, with a target to improve the mechanical performance of carbon fiber reinforced polymer composites. Flexural and short beam shear properties of the composites were studied at extreme temperature conditions; in-situ cryo, room and elevated temperature (−196, 30, and 120°C respectively). Laminate reinforced with CNT grafted carbon fibers exhibited highest delamination resistance with maximum improvement in flexural strength as well as in inter-laminar shear strength (ILSS) among all the carbon fiber reinforced epoxy (CE) composites at all in-situ temperatures. CNT modified CE composite showed increment of 9% in flexural strength and 17.43% in ILSS when compared to that of unmodified CE composite at room temperature (30°C). Thermomechanical properties were investigated using dynamic mechanical analysis. Fractography was also carried out to study different modes of failure of the composites.  相似文献   

20.
A strategy based on carbon nanotubes (CNTs)‐containing sizing dispersion has been implemented to fabricate nanocomposite preforms and their hybrid multiscale composites. The state of pristine CNTs and carboxylic acid functionalized CNTs (CNTs–COOH) in sizing dispersion was effectively monitored by on‐line measuring electrical conductivity. The effects of different CNTs coating applied onto glass fabric on wettability of nanocomposite fibrous reinforcement with epoxy matrix were evaluated using scanning electron microscopy and capillary experiment. A CNTs‐COOH loading of 0.5 wt% gave rise to 97% and 30°C increases in the storage modulus (G′) and glass transition temperature of the resulting hybrid composites, respectively. The enhanced thermomechanical properties of the CNTs hybrid composites are closely related to the stable CNTs sizing dispersion and uniform coating onto fiber reinforcement. The mechanism for reinforcing composites through toughening resin region with CNTs desorbing from primary fiber surface during impregnation has been identified. POLYM. COMPOS. 37:979–986, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号