首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Fuel》2005,84(14-15):1874-1878
The volatilization behavior of chlorine in three Chinese bituminous coals during pyrolysis and CO2-gasification in a fluidized bed reactor was investigated. The modes of occurrence of chlorine in raw coals and their char samples were determined using sequential chemical extraction method. The Cl volatility increases with increasing temperature. Below 600 °C the Cl volatility is different, depending on the coal type and the occurrence mode of Cl. Above 700 °C, the Cl volatilities for the three coals tested are all higher than 80%. About 41% of the chlorine in Lu-an coal and 73% of that in Yanzhou coal are organic forms, and most of them are covalently-bonded organic chlorine, which shows high volatile behavior even at low pyrolysis temperatures (below 500 °C), while the inorganic forms of chlorine in two coal samples are hardly volatilized even at low pyrolysis temperatures (below 400 °C). The restraining efficiency of addition of CaO on chlorine volatility is greatly dependent on pyrolysis temperature. The optimal restraining efficiency can be obtained at temperature range from 450 to 650 °C during pyrolysis of Lu-an coal. The volatile behavior of Cl is mainly dependent on temperature. Above 700 °C high volatility of Cl is obtained in both N2 and CO2 atmospheres.  相似文献   

2.
Fast pyrolysis of eucalyptus bark was carried out in a free-fall pyrolysis unit at different temperatures ranging from 400 to 550 °C to produce bio-oil, char and gas. The bio-oil produced at optimum temperature was mixed with alcohols with an aim to improve its properties. The results showed that the maximum bio-oil yield of 64.65 wt% on dry biomass basis could be obtained at the pyrolysis temperature of 500 °C. The addition of a small proportion (2.5–10%) of alcohol into the bio-oil could improve its viscosity, stability and heating value. These effects were further enhanced when increasing the alcohol.  相似文献   

3.
As a polymer material, UPR anchoring material has pyrolysis at high temperature, which directly affect its mechanical stability. Using micro-CT scans and 3D image reconstruction to analysis pyrolysis characteristics and the pore structure evolution of UPR anchoring material at high temperatures, and the results showed that the thermal decomposition cause obvious changes in internal microstructure at high temperatures; the average gray attenuated 20.7%, pore groups number increased 47.5% and pore group size increased 201.5% between 350 °C and 500 °C; organic cemented body corresponding to attenuation coefficient ranges from 0.0163 to 0.0373, the inner pore increased significantly after organic pyrolysis, and connected with each other to form larger pores group; the pyrolysis critical temperature is 350 °C, pyrolysis affects significantly to the internal structure and the density of the material. Mechanical properties decayed significantly at high temperature (400 °C), compressive strength decreased by 95% and pull-out strength decreased by 68.3%.  相似文献   

4.
《Ceramics International》2017,43(5):4630-4637
The thermal and microstructure stability of Nextel 610 fibers has great influence on high-temperature application of Nextel 610 fiber-reinforced ceramic matrix composites. In this work, Nextel 610 fibers were heat treated at 500–700 °C in vacuum and 800–1100 °C in Ar atmosphere, respectively. The sizing agent on Nextel 610 fiber surface could be decomposed into pyrolytic carbon, SiC and gaseous little molecules at lower temperatures, otherwise it was decomposed mainly in the form of gaseous little molecules at higher temperatures, so that the complex permittivity firstly increased and then decreased with the increasing of temperatures. The results showed that the annealed Nextel 610 fiber (T>900 °C) could be regarded as electromagnetic wave transparent fibers, while the tensile strength had declined by half when the temperature increased to 1100 °C. Therefore, Nextel 610 fibers after being annealed at higher temperatures could be further used as reinforcement to prepare high temperature ceramic matrix composites for electromagnetic wave absorption and transparent applications.  相似文献   

5.
《Ceramics International》2016,42(10):11654-11665
Crack-free silicon oxycarbide microspheres were synthesized from precursors obtained by a one-pot aqueous emulsion-process of modified polyhydromethylsiloxane. The process involved cross-linking by hydrosilylation and the advanced hydrolysis of polyhydromethylsiloxane SiH groups to SiOH. These species then participate in SiOH+SiH condensation, enhancing the cross-linking. The microspheres were additionally modified by SiH group-substitution in the initial polymer and by using various cross-linkers. The precursor powder particle structure was also modified by varying the stirring rate during emulsification. The modified preceramic microspheres, with average diameters from 7.6 to 56 µm, were subjected to pyrolytic processes at various temperatures. The chemical composition of the pyrolyzed microspheres and their precursors was studied by 29Si and 13C MAS NMR, FTIR spectroscopy, and elemental analysis. The structures of the microspheres were examined by SEM. Selected samples were also investigated by XRD and Raman spectroscopy. All of the synthesized preceramic microspheres retained their regular spherical shapes during pyrolysis at temperatures of up to 1200 °C. Heating at 1000 °C and 1200 °C yielded amorphous silicon oxycarbide ceramic materials with segregated free carbon domains. The chemical structure and morphology of the obtained ceramic microspheres were significantly influenced by the modification of the preceramic materials.  相似文献   

6.
We demonstrate the possibility to fabricate SiC monofilaments with large diameters of 100 μm by a polymer route using a dry-spinning process. The properties of the spinning solution and the parameters of the spinning process were optimized to achieve a circular cross section of the spun filaments despite their large diameter. The evolution of the diameter and the mechanical properties of the filaments with pyrolysis temperature were studied. Filament shrinkage started above 400 °C. A radial shrinkage of about 25% was measured for pyrolysis temperatures of 1200 °C. The mechanical properties significantly start to increase at pyrolysis temperatures above 600 °C. At a diameter of 100 μm the filaments show a tensile strength of 620 MPa and a tensile modulus of 138 GPa after pyrolysis at 1200 °C. A decrease in the filament diameter leads to an improvement of the mechanical properties. We demonstrate the fabrication of these SiC monofilaments on spools.  相似文献   

7.
《Fuel》2007,86(12-13):1892-1899
In this study, pistachio shell is taken as the biomass sample to investigate the effects of pyrolysis temperature on the product yields and composition when slow pyrolysis is applied in a fixed-bed reactor at atmospheric pressure to the temperatures of 300, 400, 500, 550, 700 °C. The maximum liquid yield was attained at about 500–550 °C with a yield of 20.5%. The liquid product obtained under this optimum temperature and solid products obtained at all temperatures were characterized. As well as proximate and elemental analysis for the products were the basic steps for characterization, column chromatography, FT-IR, GC/MS and SEM were used for further characterization. The results showed that liquid and solid products from pistachio shells show similarities with high value conventional fuels.  相似文献   

8.
Rapid pyrolysis of oil shale coupled with in-situ upgrading of pyrolysis volatiles over oil shale char was studied in a laboratory two-stage fluidized bed(TSFB) to clarify the shale oil yield and quality and their variations with operating conditions. Rapid pyrolysis of oil shale in fluidized bed(FB) obtained shale oil yield higher than the Fischer Assay oil yield at temperatures of 500-600 ℃. The highest yield was 12.7 wt% at 500 ℃ and was about1.3 times of the Fischer Assay oil yield. The heavy fraction(boiling point 350 ℃) in shale oil at all temperatures from rapid pyrolysis was above 50%. Adding an upper FB of secondary cracking over oil shale char caused the loss of shale oil but improved its quality. Heavy fraction yield decreased significantly and almost disappeared at temperatures above 550 ℃, while the corresponding light fraction(boiling point 350 ℃) yield dramatically increased. In terms of achieving high light fraction yield, the optimal pyrolysis and also secondary cracking temperatures in TSFB were 600 ℃, at which the shale oil yield decreased by 17.74% but its light fraction yield of 7.07 wt% increased by 86.11% in comparison with FB pyrolysis. The light fraction yield was higher than that of Fischer Assay at all cases in TSFB. Thus, a rapid pyrolysis of oil shale combined with volatile upgrading was important for producing high-quality shale oil with high yield as well.  相似文献   

9.
We present here the single-source-precursor synthesis of Fe3Si and Fe5Si3-containing SiOC ceramic nanocomposites and investigation of their magnetic properties. The materials were prepared upon chemical modification of a hydroxy- and ethoxy-substituted polymethylsilsesquioxane with iron (III) acetylacetonate (Fe(acac)3) in different amounts (5, 15, 30 and 50 wt%), followed by cross-linking at 180 °C and pyrolysis in argon at temperatures ranging from 1000 °C to 1500 °C. The polymer-to-ceramic transformation of the iron-modified polysilsesquioxane and the evolution at high temperatures of the synthesized SiFeOC-based nanocomposite were studied by means of thermogravimetric analysis (TGA) coupled with evolved gas analysis (EGA) as well as X-ray diffraction (XRD). Upon pyrolysis at 1100 °C, the non-modified polysilsesquioxane converts into an amorphous SiOC ceramic; whereas the iron-modified precursors lead to Fe3Si/SiOC nanocomposites. Annealing of Fe3Si/SiOC at temperatures exceeding 1300 °C induced the crystallization of Fe5Si3 and β-SiC. The crystallization of the different iron-containing phases at different temperatures is considered to be a consequence of the in situ generation of a Fe–C–Si alloy within the materials during pyrolysis. Depending on the Fe and Si content in the alloy, either Fe3Si and graphitic carbon (at 1000–1200 °C) or Fe5Si3 and β-SiC (at T > 1300 °C) crystallize. All SiFeOC-based ceramic samples were found to exhibit soft magnetic properties. Magnetization versus applied field measurements of the samples show a saturation magnetization up to 26.0 emu/g, depending on the Fe content within the SiFeOC-based samples as well as on the crystalline iron silicide phases formed during pyrolysis.  相似文献   

10.
Samaria-doped ceria (SDC) nanoparticles were prepared by spray pyrolysis. The means sizes of the samaria-doped ceria nanoparticles were controlled from 21 to 150 nm by changing the calcination temperatures between 700 and 1200 °C. The pellets formed from the SDC particles calcined at temperatures between 700 and 1000 °C had similar grain sizes between 0.75 and 0.82 μm. However, pellet formed from the SDC particles calcined at a temperature of 1200 °C had large grain size of 1.22 μm. The pellet formed from the SDC particles calcined at a temperature of 1000 °C had slightly smaller resistance of grain-boundary than those of the pellets formed from the SDC particles calcined at temperatures between 700 and 900 °C. However, the pellet formed from the SDC particles calcined at a temperature of 1200 °C had low resistance of grain-boundary. The pellet formed from the SDC particles calcined at a temperature of 1200 °C had conductivity of 44.65 × 10?3 S cm?1 at a measuring temperature of 700 °C that more twice than those of the pellets formed from the SDC calcined below 1000 °C.  相似文献   

11.
Using non-aqueous Pechini method, Pb(Zr0.95Ti0.05)O3 powders were prepared at low temperature by one-step pyrolysis process. The polymeric gels and powders were characterized using a range of techniques, such as DTG, XRD, SEM, Raman spectroscopy, and laser particle size distribution. The perovskite phase was formed at about 350–400 °C and some oxocarbonate impurities can be detected in all samples after calcining at 400–850 °C by one-step pyrolysis process. Phase pure and porous Pb(Zr0.95Ti0.05)O3 ceramics were obtained without pore formers from the powders by one-step pyrolysis process at 500 °C for 4 h. The relative densities were 87%, 91% and 94% for the ceramics sintered at 1100, 1150 and 1200 °C for 2 h, respectively. The porous ceramics sintered at 1200 °C for 2 h have homogeneously dispersed pores and fine-grain structures with an individual grain size of 0.7–2 μm.  相似文献   

12.
Waste pyrolysis is widely investigated, but less information is available about their co-pyrolysis. The present paper discloses the waste pyrolysis and co-pyrolysis in batch reactor at 400 °C, 450 °C and 500 °C. The effect of the raw materials and temperature to the product was investigated. Product yield was increased and the quality (composition, contaminants, etc.) improved by co-pyrolysis. Gas and pyrolysis oil yields increased as function of temperature. Higher ratio of organic waste/petroleum based plastic waste resulted in lower yields of volatile hydrocarbons. Concentrations of oxygen containing products and contaminants are significantly changed with temperature or adding of HDPE into raw materials.  相似文献   

13.
Nano-sized Ba0.7Sr0.3TiO3 powders are prepared by post-treatment of the precursor powders with hollow and thin wall structure at temperatures between 900 and 1100 °C. Ethylenediaminetetraacetic acid and citric acid improve the hollowness of the precursor powders prepared by spray pyrolysis. The mean sizes of the powders post-treated at temperatures of 900, 1000 and 1100 °C are 42, 51 and 66 nm, respectively. The densities of the Ba0.7Sr0.3TiO3 pellets obtained from the powders post-treated at 900, 1000 and 1100 °C are each 5.36, 5.55 and 5.38 g cm?3 at a sintering temperature of 1300 °C. The pellet obtained from the powders post-treated at 1000 °C has higher maximum dielectric constant than those obtained from the powders post-treated at 900 and 1100 °C.  相似文献   

14.
《Fuel》2005,84(12-13):1586-1592
A wire-mesh reactor capable of multi-step heating/holding and minimising secondary reactions of volatiles was used to investigate the effects of thermal pretreatment in inert gas on the subsequent rapid pyrolysis behaviour of Loy Yang brown coal. Our results indicate that the presence of small amounts (<10 wt%) of moisture in brown coal has little influence on the tar and char yields from the pyrolysis of brown coal at 1000 K s−1. While the hydrogen bonds between the moisture and the O-containing functional groups in the brown coal have little effects on its pyrolysis behaviour, the hydrogen bonds among the O-containing functional groups tend to induce cross-linking reactions to reduce the tar yields. Preheating the brown coal at >250 °C leads to reduced tar and increased char yields. However, the characterisation of tars using UV-fluorescence spectroscopy indicates that significant decreases in the release of larger aromatic ring systems are only observed after preheating at >380 °C for 30 min. The presence of ion-exchangeable cations (e.g. Ca2+) in the brown coal tends to stabilise the carboxylate groups and only preheating at >350 °C would result in changes in pyrolysis yields during the subsequent pyrolysis at 1000 K s−1. These results may be explained by considering the formation of cross-links involving peripheral groups at low preheating temperatures and the formation of cross-links involving aromatic ring systems at elevated temperatures.  相似文献   

15.
Mechanical and tribological properties of nanocomposites with silicon nitride matrix with addition of 1 and 3 wt.% of multilayered graphene (MLG) platelets were studied and compared to monolithic Si3N4. The wear behavior was observed by means of the ball-on-disk technique with a silicon nitride ball used as the tribological counterpart at temperatures 25 °C, 300 °C, 500 °C, and 700 °C in dry sliding. Addition of such amounts of MLG did not lower the coefficient of friction. Graphene platelets were integrated into the matrix very strongly and they did not participate in lubricating processes. The best performance at room temperature offers material with 3 wt.% graphene, which has the highest wear resistance. At medium temperatures (300 °C and 500 °C) coefficient of friction of monolithic Si3N4 and composite with 1%MLG reduced due to oxidation. Wear resistance at high temperatures significantly decreased, at 700 °C differences between the experimental materials disappeared and severe wear regime dominated in all cases.  相似文献   

16.
Mesoporous silicon oxycarbide ceramics without free carbon were prepared by pyrolysis of cross-linked polysiloxane at different temperatures (1300–1450 °C) followed by post treatments. The post treatments comprised two steps (HF etching and oxidation at 650 °C in air). The sample pyrolyzed at 1300 °C after post treatments exhibits the largest specific surface area (SSA) reaching up to 204 m2/g and the biggest total pore volume (0.58 cm3/g) with an average pore size of 11.4 nm. Increasing pyrolysis temperature will lead a quick decline of SSA and total pore volume. The thermal stability of pore structure of the sample pyrolyzed at 1300 °C with post treatments was investigated in air. The SSA and total pore volume almost keeps the same up to 750 °C, and subsequently decreases with a high speed. The most possible reason is the pores are severely closed by viscous flow of SiO2 produced from SiC nanocrystallites.  相似文献   

17.
A visible-light-active N-containing TiO2 photocatalysts were prepared from crude amorphous titanium dioxide by heating amorphous TiO2 in gaseous NH3 atmosphere. The calcination temperatures ranged from 200 to 1000 °C, respectively. UV–vis/DR spectra indicated that the N-doped catalysts prepared at temperatures <400 °C absorbed only UV light (Eg = 3.3 eV), whereas samples prepared at temperatures ≥400 °C absorbed both, UV (Eg = 3.10–3.31 eV) and vis (Eg = 2.54–2.66 eV) light. The chemical structure of the modified photocatalysts was investigated using FT-IR/DRS spectroscopy. All the spectra exhibited bands indicating nitrogen presence in the catalysts structure. The photocatalytic activity of the investigated catalysts was determined on a basis of a decomposition rate of nonionic surfactant (polyoxyethylenenonylphenol ether, Rokafenol N9). The most photoactive catalysts were those calcinated at 300, 500 and 600 °C. For the catalysts heated at temperatures of 500 and 600 °C Rokafenol N9 removal was equal to 61 and 60%, whereas TOC removal amounted to 40 and 35%, respectively. In case of the catalyst calcinated at 300 °C surfactant was degraded by 54% and TOC was removed by 35%. The phase composition of the most active photocatalysts was as follows: (a) catalyst calcinated at 300 °C—49.1% of amorphous TiO2, 47.4% of anatase and 3.5% of rutile; (b) catalyst calcinated at 500 °C—7.1% of amorphous TiO2, 89.4% of anatase and 3.5% of rutile; (c) catalyst calcinated at 600 °C—94.2% of anatase and 5.8% of rutile.  相似文献   

18.
Two-step sintering (TSS) was applied to suppress the accelerated grain growth of sub-micron (~150 nm) alumina powder. The application of an optimum TSS regime led to a remarkable decrease of grain size down to ~500 nm; while the grain size of the full-dense structures produced by conventional sintering ranged between 1 and 2 μm. To find how important the temperatures at sintering steps might be, several TSS regimes were conducted. The results showed that the temperatures at both sintering steps play vital roles in densification and grain growth of the alumina compacts. Based on the results, the optimum regime consisted of heating the green bodies up to 1250 °C (first step) and then holding at 1150 °C for more than 60 h (second step). This yielded the finest microstructure with no deterioration of the densification. Heating at 1300 °C (first step) and then at 1200 °C (second step) was not a successful procedure. Lowering the temperature of the second step down to 1100 °C resulted in exhaustion of the densification at 88% -theoretical density. A nearly full-dense structure with an average grain size of 850 nm was obtained when the temperature of the second step was increased to 1150 °C. Empirical results show that not only the first step temperature has to be high enough to reach a structure containing unstable pores, but the second sintering temperature must also be high enough to activate the densification mechanism without grain growth. This means that a considerable densification at the first step does not imply enough second-step densification.  相似文献   

19.
This paper reports the experimental findings on the tensile behavior of Strain-hardening cement-based composites (SHCC) subjected to elevated temperatures and different strain rates and to combinations of these parameters. Uniaxial tension tests with in-situ temperature control were performed at 22 °C, 60 °C, 100 °C and 150 °C. In addition, the effect of loading rate was investigated using the strain rates of 10? 5 s? 1, 3 × 10? 4 s? 1 and 10? 2 s? 1 at all four temperatures considered. It was shown that tensile strength decreases both with an increase in temperature and with a decrease in the strain rate. The strain capacity increases with decreasing strain rate at temperatures of 22 °C and 60 °C, but for the temperature of 100 °C this material property increases when the strain rate increases. At 150 °C the investigated SHCC loses its ductility and no noticeable strain rate effect can be observed. Furthermore, the residual properties of SHCC were evaluated using uniaxial tensile tests at room temperature on the specimens which were previously heated to 60 °C, 100 °C or 150 °C. The residual tests showed that the strength, strain capacity, and work-to-fracture decrease with increasing pre-treatment temperature. However, in comparison with the results of the in-situ tests with elevated in-situ temperatures, the residual tests on SHCC yielded higher tensile strength and lower ductility. These results and possible mechanisms leading to changes in mechanical performance are discussed on the basis of the observed crack patterns on the specimens' surfaces as well as the microscopic investigations of the condition of fibers on fracture surfaces.  相似文献   

20.
Homogeneous silicon oxycarbide (SiOC) ceramic powders were prepared by pyrolysis of cross-linked polysiloxane at different temperatures (1250–1500 °C) under vacuum. The effect of pyrolysis temperature on the pore structure evolution was investigated by means of N2 adsorption, SEM, XRD, IR and element analysis (EA). Studies showed that predominate mesoporous ceramics with the average pore size in the range of 2–13 nm were obtained after pyrolysis in this temperature range. The pore structure transformation is strongly correlated with the thermolytic decomposition process of the used precursor, such as phase separation and carbothermal reduction. At relatively lower temperature (1250–1350 °C), the ceramics had a relative small specific surface areas (35 m2/g) owing to the low degree of carbothermal reduction. However, as the carbothermal degree had an obvious augment at relative higher temperature (1400–1450 °C), the specific surface areas and total pore volume increased and reached to the maximum of 66 m2/g and 0.214 cm3/g, respectively, and subsequently decreased rapidly after 1500 °C for the reason of partial sintering of the nano-sized SiC derived from polysiloxane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号