首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Hierarchical porous nitrogen-doped carbon (HPNC) materials are synthesized through one-step carbonization of polyimide using triblock copolymer P123 as mesoporous template. The microstructure, chemical composition and CO2 adsorption behaviors are investigated in detail. The results show that HPNC materials have hierarchical micro-/mesopore structures, high specific surface area of 579 m2/g, large pore volume of 0.34 cm3/g, and nitrogen functional groups (5.2 %). HPNC materials exhibit high CO2 uptake of 5.56 mmol/g at 25 °C and 1 bar, which is higher than those of previously reported nitrogen-doped porous carbon materials. After 5 cycles the value of CO2 adsorption uptakes is 5.28 mmol/g, which is approximately 95 % of the original adsorption capacity. The estimated CO2/N2 selectivity of HPNC materials is 17, revealing great promise for practical CO2 adsorption and separation applications. The efficient CO2 uptake and enhanced CO2/N2 selectivity are due to the combination of nitrogen-doped and hierarchical porous structures of HPNC materials.  相似文献   

2.
Porous Polymer Networks (PPNs) are an emerging category of advanced porous materials that are of interest for carbon dioxide capture due to their great stabilities and convenient functionalization processes. In this work, an intrinsically-functionalized porous network, PPN-101, was prepared from commercially accessible materials via an easy two-step synthesis. It has a BET surface area of 1095 m2/g. Due to the presence of the benzimidazole units in the framework, its CO2 uptake at 273 K reaches 115 cm3/g and its calculated CO2/N2 selectivity is 199, which indicates its potential for CO2/N2 separation. The great stability, large CO2/N2 selectivity and low production cost make PPN-101 a promising material for industrial separation of CO2 from flue gas. Its H2 and CH4 uptake properties were also investigated.  相似文献   

3.
Sustainable biomass-derived carbon materials were produced by hydrothermal carbonization of corn stover that was followed by chemical activation with KOH. The prepared carbon materials were used for CO2 adsorption and had a CO2 uptake of 7.14?mmol/g at a pressure of 1?bar and at 0°C that was much higher than CO2 uptake by activated carbon that was prepared from direct activation of corn stover (2.78?mmol/g). The porous corn stover-derived carbonaceous material had high surface area (2442?m2/g) and large pore volume (1.55?cm3/g). Product yields obtained by the activation of hydrothermally carbonized corn stover were significantly higher than those obtained by the direct activation of corn stover (36–75?vs. 8%). The prepared corn stover-derived porous carbon had a high CO2/N2 selectivity of 15.5 and exhibited constant CO2 uptake for five successive reuse cycles. The hydrothermal carbonization step plays an important role for producing porous carbons from biomass that have high and specific adsorption properties.  相似文献   

4.
A series of carbide-derived carbons (CDCs) with different surface oxygen contents were prepared from TiC powder by chlorination and followed by HNO3 oxidation. The CDCs were characterized systematically by a variety of means such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ultimate analysis, energy dispersive spectroscopy, N2 adsorption, and transmission electron microscopy. CO2 adsorption measurements showed that the oxidation process led to an increase in CO2 adsorption capacity of the porous carbons. Structural characterizations indicated that the adsorbability of the CDCs is not directly associated with its microporosity and specific surface area. As evidenced by elemental analysis, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy, the adsorbability of the CDCs has a linear correlation with their surface oxygen content. The adsorption mechanism was studied using quantum chemical calculation. It is found that the introduction of O atoms into the carbon surface facilitates the hydrogen bonding interactions between the carbon surface and CO2 molecules. This new finding demonstrated that not only the basic N-containing groups but also the acidic O-containing groups can enhance the CO2 adsorbability of porous carbon, thus providing a new approach to design porous materials with superior CO2 adsorption capacity.  相似文献   

5.
Molecular sieve properties of activated carbon fibers modified by cracking treatment with methane are studied herein. The effect of methane treatment on the porous texture of the samples has been studied while varying temperature and time. These materials have been evaluated for their selectivity during CO2 and CH4 separation; their uptakes have been compared with non-treated activated carbon fibers (studied previously), which were considered suitable to be used as molecular sieves. Kinetics of CO2 and CH4 uptake have also been investigated in this research. The treatment produced materials exhibiting fast kinetics and high selectivity during CO2 and CH4 separation; at the same time however, the CO2 uptake capacity was diminished.  相似文献   

6.
In this work, we examine the use of the amidoxime functional group grafted onto a hierarchical porous carbon framework for the selective capture and removal of carbon dioxide from combustion streams. Measured CO2/N2 ideal selectivity values for the amidoxime-grafted carbon were significantly higher than the pristine porous carbon with improvements of 65%. Though the overall CO2 capacity decreased slightly for the activated carbon from 4.97 mmol g−1 to 4.24 mmol g−1 after surface modification due to a reduction in the total surface area, the isosteric heats of adsorption increased after amidoxime incorporation indicating an increased interaction of CO2 with the sorbent. Total capacity was reproducible and stable after multiple adsorption/desorption cycles with no loss of capacity suggesting that modification with the amidoxime group is a potential method to enhance carbon capture.  相似文献   

7.
A combination of experiments and molecular simulations has been used to further understand the contribution of gas adsorption to the carbon dioxide (CO2) selectivity of nanoporous carbon (NPC) membranes as a function of temperature and under mixed gas conditions. Whilst there have been various publications on the adsorption of gases onto carbon materials, this study aims to benchmark a simulation model with experimental results using pure gases. The simulation model is then used to predict mixed gas behaviour. These mixed gas results can be used in the assessment of NPC membranes as a suitable technology for both carbon dioxide separations from air-blown syngas and from natural gas. The gas adsorption experiments and molecular simulations have confirmed that CO2 is more readily adsorbed on nanoporous carbon than methane (CH4) and nitrogen (N2). Increasing the temperature reduces the extent of adsorption and the CO2 selectivity. However, the difference between the CO2 and N2 heats of adsorption is significant resulting in good CO2/N2 separation even at higher temperatures.  相似文献   

8.
The objective of this study is to relate textural and surface characteristics of microporous activated carbon to their methane adsorption capacity. Oil palm shell was used as a raw material for the preparation of pore size controlled activated carbon adsorbents. The chemical treatment was followed by further physical activation with CO2. Samples were treated with CO2 flow at 850 °C by varying activation time to achieve different burn-off activated carbon. H3PO4 chemically activated samples under CO2 blanket showed higher activation rates, surface area and micropore volume compared to other activation methods, though this sample did not present high methane adsorption. Moreover, it was shown that using small proportion of ZnCl2 and H3PO4 creates an initial narrow microporosity. Further physical activation grantees better development of pore structure. In terms of pore size distribution the combined preparation method resulted in a better and more homogenous pore size distribution than the conventional physical activation method. Controlling the pore size of activated carbon by this combined activation technique can be utilized for tuning the pore size distribution. It was concluded that the high surface area and micropore volume of activated carbons do not unequivocally determine methane capacities.  相似文献   

9.
改性蜂窝状活性炭吸附二氧化碳和氮气的热力学   总被引:1,自引:0,他引:1  
陈建宇  刘资文  李平  于建国 《化工学报》2012,63(10):3017-3026
蜂窝状活性炭具有较高的比表面积、多孔道、压降低、吸脱附速率快、不易堵塞等优点,因此被认为是捕集烟道气中CO2重要吸附材料。选用蜂窝状煤基和椰壳两种活性炭吸附剂,采用磁悬浮热天平分别测定了CO2和N2的吸附等温线。采用1 mol·L-1 K2CO3对蜂窝状活性炭材料进行浸渍改性,提高在低二氧化碳分压下的CO2吸附性能。采用Langmuir、multi-site Langmuir和Virial 3种模型对吸附平衡数据进行拟合,得出热力学参数,为后续吸附工艺优化设计提供基础数据。结果表明在实验范围内3种模型均能对实验测量的等温线进行较好的拟合,Langmuir模型总体拟合效果最好。  相似文献   

10.
Three‐dimensional computational fluid dynamics studies related to dynamics adsorption of CO2 from natural gas is found to be limited. 3D analyses for dynamics adsorption are substantially crucial to give a better prediction on the adsorption process by considering the actual fluid flow behavior within the packed‐bed porous media. A kinetic adsorption model has been integrated in a commercial fluid dynamics simulator to simulate the 3D hydrodynamics and adsorption phenomenon in a zeolite‐filled packed column for a CO2‐methane separation system. The effects of various parameters such as Reynolds number, CO2 feed concentration, feed temperature, and column dimension on CO2 adsorption efficiency have been investigated. A correlation for adsorption efficiency based on the CO2 concentration profiles has been developed and validated.  相似文献   

11.
The objective of the present work is to develop a simple procedure, which avoids the need of a binder, to obtain activated carbon monoliths from a waste precursor (coal tar pitch) suitable for CO2 capture and/or separation. The main task of this process consists of a nitration process of the coal tar pitch. This nitration step over the coal tar pitch is characterised by different techniques, such as infrared spectroscopy and thermogravimetric analysis. The nitration treatment produces the oxidation of the pitch molecules, leading to hydrogen consumption and generating oxygenated and nitrogenated surface complexes. As a consequence of this oxidation, nitrated coal tar pitch is an infusible material, which allows the carbonization of monolithic pieces avoiding their fusion. Decomposition of these surface complexes during the carbonization of monoliths generates narrow microporosity, which is suitable for CO2 capture from gas streams at room temperature. The molecular sieving properties of these materials are studied by CH4 and CO2 adsorption kinetics.  相似文献   

12.
研究旨在合成一种新型铟基有机骨架材料,用于甲烷存储,以应用于清洁能源领域。研究使用In(NO3)3.4H2O和H3BTB,醋酸作模板剂,采用溶剂热法来实现材料的合成,所得材料表现出较高的比表面积2487 m2 g-1,和永久孔隙结构,孔体积为1.07 cm3 g-1。在273 K、80 bar条件下,甲烷重量工作能力达到397 cm3 g-1(0.29 g g-1)。这些结果表明了该材料在甲烷存储方面的潜在应用。值得注意的是,本研究的创新之处在于成功合成具有优异甲烷吸附性能的铟基MOF材料,为高性能气体吸附材料的开发提供了新方向。因此,本文为清洁能源技术的发展提供了新的思路。此外,该材料还表现出良好的可重复性,为其在实际应用中的长期可持续性提供了有力支持。  相似文献   

13.
The preparation, characterization and CO2 uptake performance of N-doped porous carbon materials and composites derived from direct carbonization of ZIF-8 under various conditions are presented for the first time. It is found that the carbonization temperature has remarkable effect on the compositions, the textural properties and consequently the CO2 adsorption capacities of the ZIF-derived porous materials. Changing the carbonization temperature from 600 to 1000 °C, the composites and the resulting porous carbon materials possess a tuneable nitrogen content in the range of 7.1–24.8 wt%, a surface area of 362–1466 m2 g−1 and a pore volume of 0.27–0.87 cm3 g−1, where a significant proportion of the porosity is contributed by micropores. These N-doped porous composites and carbons exhibit excellent CO2 uptake capacities up to 3.8 mmol g−1 at 25 °C and 1 bar with a CO2 adsorption energy up to 26 kJ mol−1 at higher CO2 coverages. The average adsorption energy for CO2 is one of the highest ever reported for any porous carbon materials. Moreover, the influence of textural properties on CO2 capture performance of the resulting porous adsorbents has been discussed, which may pave the way to further develop higher efficient CO2 adsorbent materials.  相似文献   

14.
The separation of carbon dioxide from light hydrocarbons is a vital step in multiple industrial processes that could be achieved by pressure swing adsorption (PSA), if appropriate adsorbents could be identified. To compare candidate PSA adsorbents, carbon dioxide, methane, and ethane adsorption isotherms were measured for cation exchanged forms of the titanosilicate molecular sieves ETS-10, ETS-4, and RPZ. Mixed cation forms, such as Ba/H-ETS-10, may offer appropriate stability, selectivity, and swing capacity to be utilized as adsorbents in CO2/CH4 PSA processes. Certain cation exchanged forms of ETS-4 were found to partially or completely exclude ethane by size, and equivalent RPZ materials were observed to exclude both methane and ethane, while allowing carbon dioxide to be substantially adsorbed. Adsorbents such as Ca/H-ETS-4 and Ca/H-RPZ are strong candidates for use in PSA separation processes for both CO2/C2H6 and CO2/CH4, potentially replacing current amine scrubber systems.  相似文献   

15.
The enormous emission of carbon dioxide (CO2) from industries has triggered a series of environmental issues. In recent years, ionic liquids (ILs) as novel absorbents are widely used for CO2 capture owing to their low vapor pressure and tunable structures. IL-modified adsorbents have the advantages of both ILs and porous supports, such as high CO2 selectivity and high specific surface area, which are novel agents to capture CO2 with broad application prospects. In this review, more than 140 IL-modified adsorbents for CO2 capture in recent years were systematically summarized. The types of ILs including conventional ILs and functionalized ILs on CO2 separation performance of different IL hybrid adsorbents, and their adsorption mechanisms were also discussed. Finally, future perspectives on IL-modified adsorbents for CO2 separation were further posed.  相似文献   

16.
A polymer foam material with both the open-cell porous structure and the polyethylenemine (PEI)-grafted inner face was constructed for CO2 capture. The porous poly(tert-butyl acrylate) foam was first prepared via a concentrated emulsion polymerization, and then the carboxyl groups were introduced on the interface of porous polymer after the hydrolysis reaction. Subsequently, the surface of the foam was grafted with PEI, and finally the PEI-grafted porous polymer foam designed as a CO2 capture material was obtained. The structures of the foams were characterized by infrared spectroscopy, EDS, and SEM. The CO2 adsorption properties were measured by adsorption/desorption cycles. As a result, the polymer foam contained a large number of amine groups (13.9 wt % N), and therefore possessed a high CO2 adsorption capacity (5.91 mmol g−1 at 40°C and 100 kPa). In addition, they also exhibited high CO2 adsorption rate, good selectivity for CO2-N2 separation, and good stability according to CO2 cyclic adsorption/desorption test. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47844.  相似文献   

17.
A novel dual-membrane reactor concept was introduced for integrating the oxidative coupling of methane (OCM) and CO2 methane reforming (dry reforming) reactors. The OCM reactions occur in a conventional porous packed bed membrane reactor structure and a portion of the undesired produced CO2 and generated heat are transferred through a molten-carbonate perm-selective membrane and consumed in the adjacent dry methane reforming catalytic bed. This integrated reactor provides a very promising thermal performance by controlling the temperature peak to be below 50 °C in reference to the average operating temperature in the OCM section. This was achieved even for the low methane-to-oxygen ratio 2 by introducing 10% CO2 as the diluent agent and reactant in this integrated reactor structure. This contributed to the improved selective performance of 32% methane conversion and 25% C2-yield including 21% C2H4-yield in the OCM section which also enhances the performance of the downstream units consequently. Around half of the unconverted methane leaving the OCM section was converted to syngas in the DRM section.The dual-membrane reactor alone can utilize a significant amount of the carbon dioxide generated in the OCM catalytic bed. In combination with adsorption unit in the downstream of the integrated process, 90% of the produced CO2 can be recovered and further converted to valuable syngas products. The experimental data, obtained from a mini-plant scale experimental facility, were exploited to verify the performance of the OCM reactor and the CO2 separation section.  相似文献   

18.
S-doped microporous carbon materials were synthesized by the chemical activation of a reduced-graphene-oxide/poly-thiophene material. The material displayed a large CO2 adsorption capacity of 4.5 mmol g−1 at 298 K and 1 atm, as well as an impressive CO2 adsorption selectivity over N2, CH4 and H2. The material was shown to exhibit a stable recycling adsorption capacity of 4.0 mmol g−1. The synthesized material showed a maximum specific surface area of 1567 m2 g−1 and an optimal CO2 adsorption pore size of 0.6 nm. The microporosity, surface area and oxidized S content of the material were found to be the determining factors for CO2 adsorption. These properties show that the as synthesized S-doped microporous carbon material can be more effective than similarly prepared N-doped microporous carbons in CO2 capture.  相似文献   

19.
Two series of activated carbon discs have been prepared by chemical activation of olive stones with ZnCl2 and H3PO4. Some of the carbons have been post-treated in order to modify their porous texture and/or surface chemical composition. All carbons have been characterized by adsorption of N2 (−196 °C) and CO2 (0 °C) and immersion calorimetry into dichloromethane. The volume of methane adsorbed at 25 °C and 3.5 MPa is proportional to the surface area deduced from immersion calorimetry into dichloromethane. Consequently, it is possible to estimate, using a single experiment, the possibility of using activated carbons for the storage of natural gas. On the other hand, the methane uptake can be also correlated to the volume of micropores, provided by the adsorption of N2 at −196 °C and CO2 at 0 °C, although the correlations is not as good. Only carbons slightly activated, with low surface area and microporosity below around 0.6 nm, do not adjust the above correlations because they adsorb more methane than the expected, the effect of chemical nature of the carbon surface being almost negligible.  相似文献   

20.
An efficient computational screening approach is proposed to select the most cost‐effective materials and adsorption process conditions for CH4/CO2 separation. The method identifies eight novel zeolites for removing CO2 from natural gas, coalbed methane, shale gas, enhanced oil recovery gas, biogas, and landfill gas sources. The separation cost is minimized through hierarchical material screening combined with rigorous process modeling and optimization. Minimum purity and recovery constraints of 97 and 95%, respectively, are introduced to meet natural gas pipeline specifications and minimize losses. The top zeolite, WEI, can recover methane as economically as $0.15/MMBTU from natural gas with 5% CO2 to $1.44/MMBTU from natural gas with 50% CO2, showing the potential for developing natural gas reservoirs with higher CO2 content. The necessity of a combined material selection and process optimization approach is demonstrated by the lack of clear correlation between cost and material‐centric metrics such as adsorption selectivity. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1767–1785, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号