首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了既能降到液氢温区又能确保制冷机的温度稳定性,开展了仅采用长颈管,不使用双向进气进行调相的单级高频多路旁通型脉冲管制冷机的实验研究。首先用数值计算的方法获得了多路旁通开度是否最佳的判据。研制出的制冷机在充气压力1.73MPa,输入电功220W时,无负荷最低制冷温度能够降到23.6K,为目前所报道的在没有双向进气时单级高频脉冲管制冷机获得的最低温度。在达到稳定状态后,制冷机性能稳定,温度波动幅值小于0.1K。在220W输入电功下,能够在29.2K获得0.516W,34.3K获得1.0W的制冷量。  相似文献   

2.
This paper presents the CFD modeling and experimental verifications of a single-stage inertance tube coaxial Stirling-type pulse tube cryocooler operating at 30–35 K using mixed stainless steel mesh regenerator matrices without either double-inlet or multi-bypass. A two-dimensional axis-symmetric CFD model with the thermal non-equilibrium mode is developed to simulate the internal process, and the underlying mechanism of significantly reducing the regenerator losses with mixed matrices is discussed in detail based on the given six cases. The modeling also indicates that the combination of the given different mesh segments can be optimized to achieve the highest cooling efficiency or the largest exergy ratio, and then the verification experiments are conducted in which the satisfactory agreements between simulated and tested results are observed. The experiments achieve a no-load temperature of 27.2 K and the cooling power of 0.78 W at 35 K, or 0.29 W at 30 K, with an input electric power of 220 W and a reject temperature of 300 K.  相似文献   

3.
Haizheng Dang 《低温学》2012,52(4-6):205-211
A high-capacity single-stage coaxial pulse tube cryocooler operating at around 60 K has been developed to provide the appropriate cooling for the next-generation very-large-scale long wave infrared focal plane arrays under development. The application background and cooler design process are described, and the performance characteristics are presented. At present, the cooler typically provides 4.06 W at 60 K with the input power of 180 W at 300 K reject temperature. 4.72 W can also be achieved when the input power increases to 200 W, and over 9.4% of Carnot efficiency at 60 K has been realized. The larger pulse tube diameter of 14.2 mm is used and the evident orientation sensitivity is observed in the range of 55–65 Hz. The experiments also observe the obvious reject temperature dependence.  相似文献   

4.
Haizheng Dang 《低温学》2012,52(4-6):216-220
Several 40 K single-stage coaxial high frequency pulse tube cryocoolers (PTCs) have been developed to provide reliable and low-noise cooling for GaAs/AlGaAs Quantum-Well infrared photodetectors (QWIPs). The inertance tubes together with the gas reservoir become the only phase shifter to guarantee the required long-term stability. The mixed regenerator consisting of three segments has been developed to enhance the overall regenerator performance. At present, the cooler prototype has achieved a no-load temperature of 29.7 K and can typically provide 860 mW cooling at 40 K with 200 W electric input power rejecting at 300 K. The performance characteristics such as the temperature stability and ambient temperature adaptability are also presented.  相似文献   

5.
A single-stage 10 W/90 K coaxial pulse tube cryocooler has been developed for space-borne optics cooling. The design considerations are described, and the optimizations on the double-segmented inertance tubes are presented. The preliminary engineering model (EM) of the cooler has been worked out, which typically provides the cooling of 10 W at 90 K with the input power of 175.6 W at 310 K reject temperature, and achieves around 14% of Carnot efficiency at 90 K. The reject temperature dependence experiments on the EM show a smaller slope of 10.2 W/10 K and indicate a good adaptability to the reject temperature range from 290 K to 333 K.  相似文献   

6.
L.W. Yang  Y.Q. Xun  J.T. Liang 《低温学》2010,50(5):342-346
This paper introduces two single-stage high frequency coaxial pulse tube cryocoolers (PTCs) with base temperature below 30 K. One has reached the lowest temperature of 26.1 K with an electric power of 250 W, which is the reported lowest temperature for single-stage high frequency PTC without multi-bypass. Using nozzle for double-inlet instead of need valves, the second PTC has achieved the temperature of 28.6 K with an electric power of 235 W. The analysis result is coinciding with experiments in general. The paper shows the advantage of the cooperated phase adjustment method of inertance tube and double-inlet, they might be the best choice when low temperature PTC is required.  相似文献   

7.
A thermally coupled two-stage Stirling-type pulse tube cryocooler (PTC) with inertance tubes as phase shifters has been designed, manufactured and tested. In order to obtain a larger phase shift at the low acoustic power of about 2.0 W, a cold inertance tube as well as a cold reservoir for the second stage, precooled by the cold end of the first stage, was introduced into the system. The transmission line model was used to calculate the phase shift produced by the cold inertance tube. Effect of regenerator material, geometry and charging pressure on the performance of the second stage of the two-stage PTC was investigated based on the well known regenerator model REGEN. Experimental results of the two-stage PTC were carried out with an emphasis on the performance of the second stage. A lowest cooling temperature of 23.7 K and 0.50 W at 33.9 K were obtained with an input electric power of 150.0 W and an operating frequency of 40 Hz.  相似文献   

8.
A Stirling pulse tube cryocooler (SPTC) operating at the liquid-helium temperatures represents an excellent prospect for satisfying the requirements of space applications because of its compactness, high efficiency and reliability. However, the working mechanism of a 4 K SPTC is more complicated than that of the Gifford McMahon (GM) PTC that operates at the relatively low frequency of 1–2 Hz, and has not yet been well understood. In this study, the primary operating parameters, including frequency, charge pressure, input power and precooling temperature, are systematically investigated in a home-developed separate three-stage SPTC. The investigation demonstrates that the frequency and precooling temperature are closely coupled via phase shift. In order to improve the cooling capacity it is important to lower the frequency and the precooling temperature simultaneously. In contrast to the behavior predicted by previous studies, the pressure dependence of the gas properties results in an optimized pressure that decreases significantly as the temperature is lowered. The third stage reaches a lowest temperature of 4.97 K at 29.9 Hz and 0.91 MPa. A cooling power of 25 mW is measured at 6.0 K. The precooling temperature is 23.7 K and the input power is 100 W.  相似文献   

9.
Luwei Yang 《低温学》2008,48(11-12):492-496
Multi-stage Stirling-type pulse tube cryocoolers with high frequency (30–60 Hz) are one important direction in recent years. A two-stage Stirling-type pulse tube cryocooler with thermally coupled stages has been designed and established two years ago and some results have been published. In order to study the effect of first stage precooling temperature, related characteristics on performance are experimentally investigated. It shows that at high input power, when the precooling temperature is lower than 110 K, its effect on second stage temperature is quite small. There is also the evident effect of precooling temperature on pulse tube temperature distribution; this is for the first time that author notice the phenomenon. The mean working pressure is investigated and the 12.8 K lowest temperature with 500 W input power and 1.22 MPa average pressure have been gained, this is the lowest reported temperature for high frequency two-stage PTCS. Simulation has reflected upper mentioned typical features in experiments.  相似文献   

10.
G.Y. Yu  X.T. Wang  W. Dai  E.C. Luo 《低温学》2012,52(4-6):212-215
High reliability, compact size and potentially high thermal efficiency make the high frequency thermoacoustically-driven pulse tube cryocooler quite promising for space use. With continuous efforts, the lowest temperature and the thermal efficiency of the coupled system have been greatly improved. So far, a cold head temperature below 60 K has been achieved on such kind of cryocooler with the operation frequency of around 300 Hz. To further improve the thermal efficiency and expedite its practical application, this work focuses on studying the influence of cold head structure on the system performance. Substantial numerical simulations were firstly carried out, which revealed that the cold head structure would greatly influence the cooling power and the thermal efficiency. To validate the predictions, a lot of experiments have been done. The experiments and calculations are in reasonable agreement. With 500 W heating power input into the engine, a no-load temperature of 63 K and a cooling power of 1.16 W at 80 K have been obtained with parallel-plate cold head, indicating encouraging improvement of the thermal efficiency.  相似文献   

11.
Expansion work is generally wasted as heat in a pulse-tube cryocooler and thus represents an obstacle to obtaining higher Carnot efficiency. Recovery of this dissipated power is crucial to improvement of these cooling systems, particularly when the cooling temperature is not very low. In this paper, an efficient cascade cryocooler that is capable of recovering acoustic power is introduced. The cryocooler is composed of two coolers and a displacer unit. The displacer, which fulfills both phase modulation and power transmission roles, is sandwiched in the structure by the two coolers. This means that the expansion work from the first stage cooler can then be used by the second stage cooler. The expansion work of the second stage cooler is much lower than the total input work and it is thus not necessary to recover it. Analyses and experiments were conducted to verify the proposed configuration. At an input power of 1249 W, the cascade cryocooler achieved its highest overall relative Carnot efficiency of 37.2% and a cooling power of 371 W at 130 K. When compared with the performance of a traditional pulse-tube cryocooler, the cooling efficiency was improved by 32%.  相似文献   

12.
The development of pulse tube coolers has progressed significantly during the past two decades. A single piston linear compressor is used to in order to reduce the size and mass of a high frequency pulse tube cryocooler. The pulse tube achieved a no-load temperature of 61 K and a cooling power of 1 W@80 K with an operating frequency of 80 Hz and an electrical input power of 50 W. By itself, the single piston compressor generates a large vibration, so a set of leaf springs with an additional mass is used to reduce the vibration. The equation relating the mass, the elasticity coefficient of leaf spring and the working frequency is obtained through an empirical fit of the experimental data. The vibration amplitude is reduced from 55 mm/s to lower than 5 mm/s by using a proper leaf spring. This paper demonstrates that a single piston compressor with vibration reduction provides a good choice for a PTC.  相似文献   

13.
The development of a high cooling power and high efficiency 4.2 K two stage G-M cryocooler is critically important given its broad applications in low temperature superconductors, MRI, infrared detector and cryogenic electronics. A high efficiency 1.5 W/4.2 K pneumatic-drive G-M cryocooler has recently been designed and developed by ARS. The effect of expansion volume rate and operation conditions on the cooling performance has been experimentally investigated. A typical cooling performance of 1.5 W/4.2 K has been achieved, and the minimum temperature of the second stage is 2.46 K. The steady input power of the compressor at 60 Hz is 6.8 kW, while the operation speed of the rotary valve is 30 rpm. A maximum cooling power of 1.75 W/4.2 K has been obtained in test runs.  相似文献   

14.
In order to improve the cooling performance of pulse tube cooler (PTC) at 20-40 K, hybrid regenerators are often employed. In this paper a three-layer regenerator, which consists of woven wire screen, lead sphere and Er3Ni is optimized to enhance the cooling performance and explore the lowest attainable refrigeration temperature for a single-stage PTC. The efforts focus on the temperature range of 80-300 K, where woven wire screens are used. Theoretical and experimental studies are carried out to study the metal material and the mesh size effect of woven wire screens on the performance of the single-stage G-M type PTC. A lowest no-load refrigeration temperature of 11.1 K was obtained with an input power of 6 kW. The PTC can supply 17.8 W at 20 K and 39.4 W at 30 K, respectively.  相似文献   

15.
Micro Joule–Thomson (JT) coolers made from glass wafers have been investigated for many years at the University of Twente. After successful realization of a single-stage JT microcooler with a cooling capacity of about 10 mW at 100 K, a two-stage microcooler is being researched to attain a lower temperature of about 30 K. By maximizing the coefficient of performance (COP) of the two-stage microcooler, nitrogen is selected as the optimum working fluid for the first stage and hydrogen as that for the second stage. A dynamic finite-element model is developed for analyzing the cooler performance and to calculate the smallest cooler geometry. The optimized overall cooler dimensions are 20.4 × 85.8 × 0.72 mm for a net cooling power of 50 mW at 97 K at the first stage and 20 mW at 28 K at the second stage. The cool-down time to 28 K is calculated to be about 1.7 h with mass-flow rates of 14.0 mg/s for nitrogen and 0.94 mg/s for hydrogen at steady state.  相似文献   

16.
High cooling capacity Stirling cryocooler generally has hundreds to thousands watts of cooling power at liquid nitrogen temperature. It is promising in boil-off gas (BOG) recondensation and high temperature superconducting (HTS) applications. A high cooling capacity Stirling cryocooler driven by a crank-rod mechanism was developed and studied systematically. The pressure and frequency characteristics of the cryocooler, the heat rejection from the ambient heat exchanger, and the cooling performance are studied under different charging pressure. Energy conversion and distribution in the cryocooler are analyzed theoretically. With an electric input power of 10.9 kW and a rotating speed of 1450 r/min of the motor, a cooling power of 700 W at 77 K and a relative Carnot efficiency of 18.2% of the cryocooler have been achieved in the present study, and the corresponding pressure ratio in the compression space reaches 2.46.  相似文献   

17.
CEA/SBT is currently testing a 50 mK cooler developed in the framework of a European Space Agency Technological Research Program targeted for the Advanced Telescope for High Energy Astrophysics space mission. This cooler is composed of a small demagnetization refrigerator pre cooled by a sorption cooler stage. This Engineering Model is able to produce 1 μW of net heat lift at 50 mK and an additional 10 μW at 300 mK provided by the sorption cooler stage. The autonomy of the cooler is 24 h, and once the low temperature phase at 50 mK is over, it can be recycled in about 8 h with 10 μW and 100 μW available at respectively the 2.5 and 15 K heat sinks. These performances are in agreement with the European Space Agency requirements.In this paper, we present the detailed thermal performances of the cooler in nominal conditions as well as sensitivity measurements of the variation of the heat sink and the cold end temperatures.  相似文献   

18.
A Stirling-type in-line pulse tube cryocooler (PTC) has been designed, built and tested at Shanghai Institute of Technical Physics (SITP), Chinese Academy of Sciences. This PTC prototype can obtain a low-noise cooling capacity of more than 10 W at around 90 K cold head temperature and is used for cooling a space-borne infrared photo detector. In order to achieve a highly efficient PTC, a simplified numerical simulation model has been established for design and optimization. The simulation results of the regenerator, pulse tube and inertance tube are analyzed in detail. Besides, some key parameters of the PTC are listed in the paper. The PTC’s performances are tested at different operating frequencies from 42 Hz to 55 Hz and its reject temperature dependence is observed in the range of 290 K to 320 K. Furthermore, the map of the PTC’s performance characteristics is presented.  相似文献   

19.
METIS, the Mid-Infrared E-ELT Imager and Spectrograph, is one of the proposed instruments in E-ELT (European Extremely Large Telescope). Its infrared detectors require multiple operating temperatures below 77 K. Therefore, active coolers have to be deployed to provide sub-liquid-nitrogen (sub-LN2) temperature cooling. However, the sensitive imaging optical detecting system also demands very low levels of vibration. Thus, the University of Twente proposed a vibration-free cooling technique based on physical sorption. In this paper, we describe the baseline design of such a sorption-based Joule-Thomson cooler chain for the METIS instrument, that is able to deliver cooling powers of 0.4 W at 8 K, 1.1 W at 25 K and 1.4 W at 40 K from a 70-K heat sinking. This design is based on working fluid selection, cascading cooler stages and operating parameter optimization. Also, the performance of the resulting cooler design is analyzed.  相似文献   

20.
This document describes the design and the prototyping performed at CEA/SBT in partnership with AIR LIQUIDE of a high frequency large cooling power pulse tube. Driven at 58 Hz by a 7.5 kW flexure bearing pressure wave generator, this system provides a net heat lift of 210 W at 65 K. The phase shift is obtained by an inertance and a buffer volume. This type of cryogenic cooler can be used for on site gas liquefaction or drilling site and for high temperature superconductivity power device cooling (transmission lines, large generators, fault current limiters).In this paper, we focus on two essential points, the regenerator and the flow straightener. The regenerator is a key component for good performance of the pulse tube cooler. It must have a large thermal inertia, a low dead volume, a good heat transfer gas/matrix and at the same time, small pressure drop. In the present case and unlike typical moderate cooling power pulse tubes, the regenerator is very compact. However, the resulting conductive losses remain negligible compared to the cooling power targeted. The goal of the flow straightener is to avoid as much as possible any jet stream effect and to guarantee the uniformity of the velocity field at both ends of the pulse tube. Indeed multi-dimensional flow effects can significantly impact the performances of the machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号