首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用声学模态叠加法建立单腔扩张式消声器传递损失计算模型,然后通过Matlab编程实现单腔扩张式消声器传递损失的数值计算。在此基础上,比较声学模态叠加法、有限元法和基于平面波假定的经典公式法在计算单腔扩张式消声器传递损失上的差别,研究单腔扩张式消声器膨胀段尺寸对传递损失的影响。结果表明,对于平面入射波,声学模态叠加法可用于单腔扩张式消声器各频段传递损失的计算;增大膨胀段的半径能有效提高低频段的传递损失,但对高频段的影响较小;随着膨胀段宽度的增大,传递损失的峰值向低频移动,传递损失最大的频段向高频移动。  相似文献   

2.
应用有限元法分析进出口管同轴扩张室式消声器的声学性能,计算其传递损失并与一维平面波理论计算对比,分析一维平面波理论的适用范围。通过分析出口管偏置消声器,双出口管消声器和两腔消声器的声学性能表明:出口管位置和数量影响消声器中高频消声性能,而两腔消声器则能明显改善消声器中低频的消声效果。  相似文献   

3.
采用三维声学有限元法研究消声器的进出气口轴向角度对消声器声学性能的影响规律。结果表明,在中低频段,轴向角度对消声器传递损失影响很大,当轴向角度为60度时,对传递损失的影响最为显著;改进后的消声器改善了原消声器的消声性能。由于消声器进出气口轴向角度对消声性能的影响,这为消声器的设计提供了借鉴。  相似文献   

4.
重点介绍带内插管扩张式消声器的声学性能,采用有限元方法计算扩张式消声器的传递损失,分析不带内插管与带内插管扩张式消声器的区别,并且比较不同内插管结构形式对扩张式消声器声学性能的影响。计算表明,无内插管时扩张式消声器存在许多通过频率,在通过频率消声量为零,增加内插管后可以消除某些通过频率。在保证通流面积一定的情况下,采用多个内插管并联结构,在高频时声学性能有较大改善。  相似文献   

5.
为了拓宽消声频带、提高消声量,克服传统串并联腔体结构安装空间大等缺点,研究了一种新型耦合共振型进气消声器.利用一维平面波理论探究了Helmholtz消声器的消声机理;为准确模拟消声器突变结构处的高阶次声波,建立了并联共振腔结构和新型结构Helmholtz消声器的声学有限元计算模型;计算、分析、比较了各结构的消声特性,重点研究了新型结构尺寸参数对其共振频率与传递损失的影响.计算结果表明:由于腔体间空气耦合共振作用,两腔耦合共振型Helmholtz消声器具有3个共振频率;两共振腔连接管的长度与直径是影响该结构消声性能的关键尺寸,减小连接管长度或者增大直径都可以拓宽消声器的消声频带,提高消声性能.这将为主动、被动耦合共振型进气消声器的设计提供重要参考.  相似文献   

6.
穿孔管消声器因具有良好的声学性能和较低的压力损失而被运用于消除内燃机排气噪声。通过运用有限元法研究部分穿孔消声器穿孔率、插入长度、周向和轴向穿孔分布、扩张腔直径等设计参数对消声器消声性能的影响。得到如下结论:穿孔率增大、插入长度变短会引起低频共振峰向高频方向偏移;穿孔率增大、扩张腔直径减小都会引起有效消声频率范围的拓宽;穿孔的轴向、周向分布对消声器消声性能没有影响。  相似文献   

7.
用三维声学软件来分析不同截面布置对消声器声学性能的影响,发现:(1)当截面布置只改变排列位置或者位置变动比较小时,虽然大体趋势一样,但是部分频段变化较大。(2)当截面布置不同时,消声器的传递损失在比较大的频率范围内有明显区别。根据计算结果,按照具体排气噪声频谱,就可以在一定程度上对消声器进行进一步的优化设计。  相似文献   

8.
传统内插式吸气消声器腔室之间密封性差,影响消声器消声性能和阻力特性,为解决这一问题,设计一种新结构吸气消声器,通过初步实验对比,证明新吸气消声器腔室密封性好,且具有较好的声学性能和阻力特性,可使压缩机声功率级降低1.87 dB,制冷量提高7.4 W,性能系数提高0.016。为进一步提高新消声器的消声性能,利用声学分析软件LMS Virtual. Lab 进行声学仿真模拟,分析其引流管长度、引流管通流截面宽度、扩张孔位置和出口内插管长度等内部结构参数对传递损失的影响,优化内部结构参数。最终,压缩机声功率级降低2.51 dB,制冷量提高5.63W,性能系数提高0.015。  相似文献   

9.
在消声器试验中,消声器与测试管道通常用过渡管连接,针对过渡管导致损失误差的问题,采用三维声学有限元软件对锥形过渡管截面积比、锥形管长度和通过频率三个因素引起的扩张腔式消声器传递损失误差进行分析。经过研究发现,锥形过渡管引入的误差主要导致传递损失呈周期性震荡且低频段误差高于高频段。锥形过渡管截面积比越大,则误差越大,增加锥形管长度有利于减小误差。其次,在两载法基础上提出一种传递矩阵求逆的修正算法,通过对中间传声器间的声学单元传递矩阵求逆,可有效消除锥形过渡管引入的误差。  相似文献   

10.
传统的消声器声学性能计算和实验测量都是在消声器进出口管道作为平面波声场的条件下进行,当进出口管道内出现有高阶模态激发的三维声场时,这些计算方法和实验测量方法就不再适用。由此,采用消声器进出口管道内加径向隔板的方法来计算消声器的声学性能,当原来管道声场中出现高阶模态时,仍然可以用平面波方法计算消声器的传递损失。应用该方法对进气滤清消声器进行传递损失数值计算,在原来进出口管道的平面波声场范围内,计算结果与传统方法计算结果均接近实验的测量结果,验证了该方法预测消声器声学性能的可行性。进而在所设计的消声器中频声学性能实验测试台架上,用声波分解法对阻性消声器进行传递损失测试,实验测量结果和有限元仿真结果也吻合良好。  相似文献   

11.
摘要:吸气消声器主要用于减弱制冷剂吸入压缩部分时产生的进气噪声。针对目前用于往复式压缩机吸气消声器消声频带窄,中高频消声效果不佳的特点,设计出一种多腔室组合的消声器,综合考虑消声器的声学性能和流体特性。在Pro/E中建模完成后,导入ANSYS ICEM CFD中划分网格,在声学仿真软件中分别对最初和新设计后的消声器进行声学仿真。比较两种消声器的传递损失,数值仿真结果显示,新设计的消声器低频消声效果有所降低,中高频消声效果良好,整体消声量提高。最后在 Fluent中仿真消声器的流体性能,以压力损失作为衡量流体性能的标准,得出在设计消声器时,不能为了提高声学性能设计过多的腔室。  相似文献   

12.
排气消声器传递损失的实验测量与分析   总被引:2,自引:0,他引:2  
介绍消声器传递损失的测量方法,包括声波分解法、两负载法、两声源法和脉冲法。在消声器声学性能试验台上采用两负载法测量无流和有流时简单膨胀腔和直通穿孔管消声器的传递损失。测量结果表明:穿孔率对穿孔管消声器低频消声性能影响较小,对中高频消声性能影响较大,增加穿孔率能够拓宽穿孔管消声器的有效消声频率范围;气流对直通穿孔管消声器的声学性能有一定影响,穿孔率越低影响越大,随着流速的增加,低频段传递损失变化不大,高频段的传递损失显著增加。  相似文献   

13.
曾鑫  范鑫  李昱 《声学技术》2017,36(1):64-68
传递损失作为穿孔管消声器声学性能的评价指标,可以采用有限元法计算。文章提出数值联合仿真方法计算其传递损失,并与试验结果进行对比验证。进而采用该方法结合正交实验法研究多腔穿孔管消声器传递损失参数灵敏度。研究结果表明,数值联合仿真方法可以准确计算穿孔管消声器传递损失,比传统方法节省2/3的时间。在中频段,进出口管半径、扩张腔半径和第一腔结构参数对多腔穿孔管消声器传递损失影响明显。  相似文献   

14.
冰箱压缩机消声器声学特性的数值分析   总被引:1,自引:1,他引:1  
分析全封闭往复活塞冰箱压缩机的消声器消声性能。利用软件建立不同结构形状进气消声器的有限元模型,通过导入声学软件进行计算,获得一腔室,两腔室消声器和复杂形状消声器内部声场的声压分布及传递损失。分析结构参数对消声性能的影响。  相似文献   

15.
组合式穿孔管消声器声学仿真   总被引:1,自引:0,他引:1  
运用声学有限元法,对三种组合结构的穿孔管消声器进行声学仿真计算,对比分析不同穿孔率对上述消声器声学性能的影响。并对某大型穿孔管消声器的整体声学性能进行仿真计算,结果表明其1000HZ以下中低频段的消声效果不佳,为后续改进工作提供某些依据。  相似文献   

16.
摘 要:首先对某款现有挖掘机排气消声器进行声学分析,采用声学软件LMS Virtual. Lab计算出该消声器各频段的传递损失(TL)。然后分析不同结构参数对消声器消声性能的影响,根据分析结果优化其结构。最后比较分析结果,消声器的消声性能得到进一步的提高,为消声器的优化设计提供参考数据。  相似文献   

17.
应用包含高阶模态声波的二维解析法研究多穿孔管板阻性消声器的声学性能,消声器传递损失的计算结果和实验结果吻合良好.分析了穿孔率和吸声材料的流阻率对阻性消声器声学性能的影响,并且研究了具有组合式阻抗及组合流阻率吸声材料的多穿孔管板消声器的声学特性.结果表明:不同类型的组合式阻抗及组合流阻率的吸声材料对消声器在不同频段的消声性能产生一定影响.  相似文献   

18.
声学性能和空气动力学性能是评价消声器的两项重要指标,锥管结构因其良好的空气动力学性能和低频消声性能受到相关研究人员的关注。运用有限元数值计算方法,以传递损失作为评价指标,探索其结构参数对扩张式消声器消声性能的影响。研究发现,随着锥角增大,锥管消声频带向高频方向扩展;锥管长度主要影响消声带宽;扩散管口与收缩管口面积比主要影响消声峰值;锥管结构运用于扩张式消声器中对传递损失曲线具有移频、降幅、改善通过频率处消声性能的作用。  相似文献   

19.
应用三维全局弱式无网格方法求解膨胀腔消声器的声学模态,使用无网格径向基函数点插值法求解三维形函数,使用伽辽金加权残数法离散系统方程,最终求得三维声学模态。计算某简单膨胀腔消声器前23阶三维声学模态频率,并且与有限元计算结果对比,相对误差均在1%以内,验证了运用三维无网格方法计算声学模态的正确性。进而分析模态振型图,改进消声器结构,优化消声性能。  相似文献   

20.
传递损失是评价消声器声学性能的一个重要指标。提出了一种方法—管道声模态法代替传统方法估算传递损失。对进出口截面积较小的消声器进行计算和检验,与传统方法比较,结果基本吻合,且过程简单,提高传递损失的计算效率。对进出口截面积较大的消声器,中高频段由于大量高次波的出现,传统方法失效;但低频段管中声波以平面波为主,其结果与传统法一致。因此可以采用管道声模态法快速估算传递损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号