首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hisashi Sugime  Suguru Noda 《Carbon》2012,50(8):2953-2960
Vertically-aligned carbon nanotubes (VA-CNTs) were rapidly grown from ethanol and their chemistry has been studied using a “cold-gas” chemical vapor deposition (CVD) method. Ethanol vapor was preheated in a furnace, cooled down and then flowed over cobalt catalysts upon ribbon-shaped substrates at 800 °C, while keeping the gas unheated. CNTs were obtained from ethanol on a sub-micrometer scale without preheating, but on a millimeter scale with preheating at 1000 °C. Acetylene was predicted to be the direct precursor by gas chromatography and gas-phase kinetic simulation, and actually led to millimeter-tall VA-CNTs without preheating when fed with hydrogen and water. There was, however a difference in CNT structure, i.e. mainly few-wall tubes from pyrolyzed ethanol and mainly single-wall tubes for unheated acetylene, and the by-products from ethanol pyrolysis possibly caused this difference. The “cold-gas” CVD, in which the gas-phase and catalytic reactions are separately controlled, allowed us to further understand CNT growth.  相似文献   

2.
To synthesize vertically aligned carbon nanotube (VA-CNT) arrays longer than a millimeter using chemical vapor deposition (CVD), aluminum oxide buffer has to be deposited on supporting substrates to prevent diffusion and aggregation of catalyst nanoparticles. Currently, reliable deposition has to be made using expensive and time-consuming e-beam evaporation or thermal sputtering. Here, we report a simple, low-cost, and scalable method for buffer preparation using layer-by-layer assembly of boehmite nanoplates followed by thermal annealing. On top of buffer prepared using this method, we have grown VA-CNT arrays consisting of CNTs with a length of 1.3(±0.1) mm, an inner diameter of 5.6(±1.3) nm, and a wall number of 4(±1) by using CVD with iron as catalyst and ethylene as carbon source.  相似文献   

3.
Dawei Li  Lujun Pan  Yongkuan Wu  Wei Peng 《Carbon》2012,50(7):2571-2580
Carbon nanocoils (CNCs) with controlled shape, coil diameter and coil pitch have been synthesized in a chemical vapor deposition (CVD) system by changing the reaction temperature and acetylene flow rate. It is found that three-dimensional CNCs are produced at a lower temperature (700–770 °C), while a higher temperature (810 °C) leads to the growth of straight carbon nanofibers (CNFs). CNC–CNF hybrid structures are produced by increasing growth temperature from 750 to 810 °C during a single synthesis run, while CNF–CNC hybrid structures are produced by decreasing the temperature from 810 to 750 °C. Similarly, by changing growth temperature from 750 to 810 °C and then back to 750 °C during a single run, CNC–CNF–CNC complex hybrid structures can be obtained. During the CVD process, the pulsing of acetylene and the changing of acetylene flow rate are also found to be effective in controlling the structure of CNCs. CNCs with periodic helical structures can be produced by interrupting the acetylene flow or changing its flow rate periodically. It is found that the higher the flow rate of acetylene, the smaller the coil pitch and diameter of the grown CNCs.  相似文献   

4.
We report the fabrication of the 8-inch free-standing CVD diamond wafers by DC-PACVD process with the diode-type electrode configuration. Methane–hydrogen gas mixture was used as the precursor gas. The methane volume % in hydrogen, the gas flow rate and the chamber pressure were 5~12%, 400 sccm and 100~130 Torr, respectively. The discharge voltage and the discharge current were 840  910 V and 90~110 A, respectively. The substrate temperature was 1200~1300 °C. The thermal conductivity, crystallinity and microstructure were characterized by the converging thermal wave technique, Raman spectroscopy, optical microscopy and SEM, respectively. The maximum growth rate was 9 μm/h for thermal grade 8-inch wafer. The deviation of thickness and the thermal conductivity over the 8-inch wafer was around 10% of the respective averaged values. The distribution of FWHM of Raman diamond peak over the wafer surface also showed excellent uniformity. The extremely simple scale-up of the present deposition technology was demonstrated.  相似文献   

5.
A numerical model was developed and used to study the near-surface gas-phase chemistry during atmospheric-pressure radio-frequency (RF) plasma diamond chemical vapor deposition (CVD). Model predictions of the mole fractions of CH4, C2H2, C2H4 and C2H6 agree well with gas chromatograph measurements of those species over a broad range of operating conditions. The numerical model includes a two-dimensional analysis of the sampling disturbance in the thin boundary layer above the substrate, accounts for chemistry in the gas chromatography sampling line, and utilizes a reaction mechanism that is significantly revised from a previously reported version. The model is used to predict the concentrations of H, CH3, C2H2 and C at the diamond growth surface. It is suggested that methyl, acetylene and atomic carbon may all contribute significantly to film deposition during atmospheric-pressure RF plasma diamond CVD. The growth mechanism used in the model is shown to predict growth rates well at moderate substrate temperatures (∼1100 to 1230 K) but less well for lower (∼1000 K) and higher (∼1300 K) temperatures. The near-surface gas-phase chemical environment in atmospheric-pressure RF plasma diamond CVD is compared with several other diamond CVD environments. Compared with these other methods the thermal plasma is predicted to produce substantially higher concentration ratios at the surface of both H/CH3 and C2H2/CH3.  相似文献   

6.
The characteristics of diamond synthesis by 2.45 GHz microwave plasma chemical vapor deposition (CVD) under pressures greater than atmospheric pressure were investigated. The deposits on Si substrates were identified by scanning electron microscopy and Raman spectroscopy. The growth rate of diamond was found to be 250 μm/h at 300 kPa, which is ten times greater than that of the conventional low-pressure CVD method. In order to make high-speed deposition of diamond effective, the diamond growth rates for gas-phase microwave plasma CVD were compared to those from the in-liquid plasma CVD method. The growth rate was found to increase as system pressure increased, displaying the same tendency of that in-liquid plasma CVD. The amounts of input microwave energy per unit volume of diamond in the gas-phase and in-liquid plasma CVD methods were also compared. The amount of input microwave energy per unit volume of diamond was found to be 0.6 to 1 kWh/mm3.  相似文献   

7.
Millimeter-to-centimeter scale vertically aligned carbon nanotube (VACNT) arrays are widely studied because of their immense potential in a range of applications. Catalyst control during chemical vapor deposition (CVD) is key to maintain the sustained growth of VACNT arrays. Herein, we achieved ultrafast growth of VACNT arrays using Fe/Al2O3 catalysts by ethanol-assisted two-zone CVD. One zone was set at temperatures above 850 °C to pyrolyze the carbon source and the other zone was set at 760 °C for VACNT deposition. By tuning synthesis parameters, up to 7 mm long VACNT arrays could be grown within 45 min, with a maximal growth rate of ∼280 μm/min. Our study indicates that the introduction of alcohol vapor and separation of growth zones from the carbon decomposition zone help reduce catalyst particle deactivation and accelerate the carbon source pyrolysis, leading to the promotion of VACNT array growth. We also observed that the catalyst film thickness did not significantly affect the CNT growth rate and microstructures under the conditions of our study. Additionally, the ultralong CNTs showed better processability with less structural deformation when exposed to solvent and polymer solutions. Our results demonstrate significant progress towards commercial production and application of VACNT arrays.  相似文献   

8.
Monodispersed magnesia coated silica particles were prepared by the surface-induced precipitation method, in which a sol type of magnesium precursor was deposited on the surface of spherical silica particles via electrostatic attraction route, and then calcined at 700 °C for 90 min. The magnesium precursor was synthesized by the sol–gel technique, which employs ethanol as a solvent. The resulting particles were characterized with field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal (TG/DTA) analysis, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The results show the formation of a well-crystallized magnesia layer on the surface of the core silica particles. The resultant coated particles exhibited the spherical shape without the formation of a hard aggregate in spite of the heat treatment. XPS and FTIR investigations also confirmed that the magnesia coating layer and core silica particle were connected through the Mg–O–Si chemical bonding at the interface.  相似文献   

9.
At low pressure, chemical vapor deposition (CVD) diamond growth by conventional techniques such as micro-wave plasma and hot-filament have been achieved by metastable precursor species. Moreover, bulk diamond at extremely high pressures and temperatures was consistently originated by the nature of diamond-graphite phase transition. CVD diamond growth has four problems with these conventional techniques. Excluding contaminated air from low pressure reactive systems has been problematic. It is very difficult to control the concentration of atomic hydrogen at high pressures. The growth rate is unsatisfactory and the running cost of gases are high.However, the hot-filament CVD technique at atmospheric pressure overcomes these problems. We have found that in order to control the concentration of atomic hydrogen, the residence time of the input gas and the methane-hydrogen concentration ratio needed to be varied at each pressure. The relationship between the quality of deposited diamond and the pressure have been also investigated by Raman spectroscopy and X-ray diffraction patterns (XRD).The growth rate at atmospheric pressure (106 000 Pa) was found to be greater than that at the conventional pressure (5000 Pa). At atmospheric pressure, the growth rate abruptly increases with the residence time. XRD analysis revealed that the quality of diamonds grown at atmospheric pressure was higher than that of diamonds produced at low pressures. Furthermore, high quality diamond growth was achieved with a long residence time of the input gas at atmospheric pressure.  相似文献   

10.
Spherical LaAlO3 nanoparticles in a reverse microemulsion consisting of solution (water phase), Tween-80 and Span-80 (surfactant), n-butanol (cosurfactant, and cyclohexane (oil phase) were prepared. Precursor powders and calcined powders were characterized by differential thermal analysis (DTA), thermogravimetry analysis (TG), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A pure perovskite LaAlO3 formed when the precursor hydroxides calcined at 800 °C for 2 h. The particle size was about 50 nm and the shape of the monodisperse particles is spherical. The reverse microemulsion process can dramatically lower the crystallization temperature of LaAlO3 about 700 °C than the classical solid-state reaction method.  相似文献   

11.
We report the atmospheric pressure chemical vapor deposition (CVD) growth of single-layer graphene over a crystalline Cu(1 1 1) film heteroepitaxially deposited on c-plane sapphire. Orientation-controlled, epitaxial single-layer graphene is achieved over the Cu(1 1 1) film on sapphire, while a polycrystalline Cu film deposited on a Si wafer gives non-uniform graphene with multi-layer flakes. Moreover, the CVD temperature is found to affect the quality and orientation of graphene grown on the Cu/sapphire substrates. The CVD growth at 1000 °C gives high-quality epitaxial single-layer graphene whose orientation of hexagonal lattice matches with the Cu(1 1 1) lattice which is determined by the sapphire’s crystallographic direction. At lower CVD temperature of 900 °C, low-quality graphene with enhanced Raman D band is obtained, and it showed two different orientations of the hexagonal lattice; one matches with the Cu lattice and another rotated by 30°. Carbon isotope-labeling experiment indicates rapid exchange of the surface-adsorbed and gas-supplied carbon atoms at the higher temperature, resulting in the highly crystallized graphene with energetically most stable orientation consistent with the underlying Cu(1 1 1) lattice.  相似文献   

12.
Samaria-doped ceria (SDC) nanoparticles were prepared by spray pyrolysis. The means sizes of the samaria-doped ceria nanoparticles were controlled from 21 to 150 nm by changing the calcination temperatures between 700 and 1200 °C. The pellets formed from the SDC particles calcined at temperatures between 700 and 1000 °C had similar grain sizes between 0.75 and 0.82 μm. However, pellet formed from the SDC particles calcined at a temperature of 1200 °C had large grain size of 1.22 μm. The pellet formed from the SDC particles calcined at a temperature of 1000 °C had slightly smaller resistance of grain-boundary than those of the pellets formed from the SDC particles calcined at temperatures between 700 and 900 °C. However, the pellet formed from the SDC particles calcined at a temperature of 1200 °C had low resistance of grain-boundary. The pellet formed from the SDC particles calcined at a temperature of 1200 °C had conductivity of 44.65 × 10?3 S cm?1 at a measuring temperature of 700 °C that more twice than those of the pellets formed from the SDC calcined below 1000 °C.  相似文献   

13.
We report on a general method to fabricate transition metal related defects in diamond. Controlled incorporation of Mo and W in synthetic CVD diamond was achieved by adding volatile metal precursors to the diamond chemical vapor deposition (CVD) growth process. Effects of deposition temperature, grain structure and precursor exposure on the incorporation efficiency were systematically studied, and doping levels of up to 0.25 at.% have been achieved. The metal atoms are uniformly distributed throughout the diamond grains without any indication of inclusion formation. These results are discussed in context of the kinetically controlled growth process of CVD diamond.  相似文献   

14.
Carbon nanotubes (CNTs) were produced by gas phase single stage tubular microwave chemical vapor deposition (TM–CVD) using ferrocene as a catalyst and acetylene (C2H2) and hydrogen (H2) as precursor gasses. The effect of the process parameters such as microwave power, radiation time, and gas ratio of C2H2/H2 was investigated. The CNTs were characterized using scanning and transmission electron microscopy (TEM), and by thermogravimetric analysis (TGA). Results reveal that the optimized conditions for CNT production were 900 W reaction power, 35 min radiation time, and 0.6 gas ratio of C2H2/H2. TEM analyses revealed that the uniformly dispersed vertical alignment of multiwall carbon nanotubes (MWCNTs) have diameters ranging from 16 to 23 nm. The TGA analysis showed that the purity of CNT produced was 98%.  相似文献   

15.
《Ceramics International》2017,43(10):7415-7423
Duplex ceramic coatings, consisting of an inner NiCr-Cr3C2-based coating and an outmost AlCrN film, were produced on the steel substrate in succession by velocity oxygen-fuel spraying (HVOF) and cathodic vacuum arc methods, and then isochronally annealed at annealing temperatures below 900 °C for 2 h. The thermal stability and mechanical properties of the annealed samples were systematically studied by means of X-ray diffraction, Optical microscope and transmission electron microscope, in association with mechanical property measurements. The results show that the microstructure, phase evolution and mechanical properties of duplex ceramic coatings are significantly dependent on the annealing temperature. Metastable fcc-AlCrN solid solution in AlCrN film first decomposes to rich-Al and rich-Cr domains by spinodal decomposition at 700 °C, leading to a notable increase in hardness due to its smaller grain size and high elastic strain field, and then to equiaxed hcp-AlN and Cr2N by the nucleation and growth at 900 °C, leading to a notable decrease in hardness due to the recrystallization and the formation of hcp-AlN. Meanwhile, the both decarburization of Cr3C2 to Cr7C3 occurs at 800 °C, but becomes more intensive at 900 °C, leading to a notable loss in hardness. In addition, the dissolution of Cr3C2 produces high density of porosity, which also reduces the hardness. The hardness tests show the following ordering of load-bearing capacity for the duplex ceramic coatings: 700 °C>As-deposited >800 °C>900 °C. Tribological property measurements demonstrate that the wear resistance of the tested duplex ceramic coatings obeys the following ordering: 700 °C>As-deposited >800 °C>900 °C. The improved wear resistance is due to high surface hardness, load-bearing capacity and thermal stability. In addition, the wear mechanisms are shown.  相似文献   

16.
A study on the feasibility of aerosol processing of nearly monodisperse silicon nanoparticles via pyrolysis of monosilane in a hot wall reactor is presented. For optimal conditions silicon nanoparticles with a geometric standard deviation of 1.06 were synthesized at a production rate of 0.7 g/h. The size of the particles could be precisely controlled in the range of 20–40 nm, whilst maintaining a geometric standard deviation in the range of 1.06–1.08, by proper choice of the governing parameters temperature, residence time and precursor concentration. The results show that narrow particle size distributions can only be obtained in the temperature range between 900 and 1100 °C, as long as both the initial silane concentration (1 mbar silane partial pressure) and the reactor total pressure are low (25 mbar). This regime for the production of narrow particle size distributions has not been identified in prior work on the thermal decomposition of silane. Narrowly distributed particles can be obtained under conditions where nucleation and particle growth are separated and the agglomeration rates are negligible.  相似文献   

17.
《Catalysis communications》2007,8(11):1665-1670
Mesoporous Mo MCM-41 and Nb MCM-41 molecular sieves were synthesized in various ratios by hydrothermal method and were characterized by XRD, N2 adsorption isotherm and DRS-UV spectroscopy. The calcined samples were used as catalysts for the growth of carbon nanotubes using acetylene by chemical vapor deposition technique at 700–900 °C. The deposited carbon materials by acetylene decomposition, were found to be more in the case of Nb MCM-41 than in Mo MCM-41, and their catalytic activity was found to be in the order as Si/Nb = 100 > 75 > 50 > 25, and the same trend is followed for Mo MCM-41 molecular sieves. The catalytically synthesised carbon materials were characterized with Raman spectroscopy, SEM and TEM. We have obtained single walled carbon nanotubes in bundles with a tube diameter of 1.06–2.9 nm and 1.08–2.3 nm formed over Mo MCM-41 and Nb MCM-41, respectively, according to Raman spectra. Similarly well graphitised single walled carbon nanotubes formation was observed from TEM. From this observation, it is confirmed that Mo MCM-41 (100) and Nb MCM-41 (100) exist as stable catalysts for the synthesis of single walled nanotube.  相似文献   

18.
In the present work iridium layers forming a mesh on diamond have been studied as potential candidates for buried electrodes or stopping layers in an ELO process for heteroepitaxial diamond. Thin iridium layers (∼ 15 nm) were deposited by e-beam evaporation at ∼ 700 °C on the facets of individual (001)-oriented CVD diamond crystallites and macroscopic Ib HPHT substrates with off-axis angles of several degrees. The heteroepitaxial iridium films formed a mesh with 10–200 nm large holes. These were penetrated by homoepitaxial diamond in a microwave plasma chemical vapour deposition process (MWPCVD) burying the iridium layer completely after 15 min of diamond growth. High resolution X-ray diffraction including reciprocal space mapping and Raman spectroscopy was used to characterize the structural properties of the diamond overlayer on the Ib HPHT substrate. It was monocrystalline with an FWHM of 0.03–0.05° of the X-ray rocking curve. Its lattice planes were tilted by ∼ 0.01° with respect to the substrate and showed a macroscopic strain of − 10 4 perpendicular to the surface. Besides the smaller lattice constant due to the lack of nitrogen the strain is mostly attributed to a tensile in-plane stress state. Strain and tilt can be attributed to the lateral overgrowth and the off-axis angle of the substrate.  相似文献   

19.
In this paper, spherical, smooth and unagglomerated ultrafine amorphous powder particles were prepared by ultrasonic spray pyrolysis (USP) of easy-handling aqueous aluminum nitrate salts increasing the precursor solute concentration to 0.5 mol L?1 and reducing the pyrolysis temperature to 700 °C. The transformation of the USP alumina powders into α-Al2O3 was studied using combination of X-ray diffraction, electron microscopy, infrared spectroscopy, BET surface area, thermogravimetry and differential thermal analysis. A downward shift of the onset temperature of α-phase transformation to 900 °C has been detected using a larger precursor solution concentration and performing a milling before calcination due to an increase in the surface density of defects, in surface area and in anisotropic particle shape. Additional post-milling of the low calcined powders allowed the preparation of agglomerate-free pure ultrafine α-Al2O3 powder particles (~100 nm, 28 m2 g?1), free of vermicular microstructures.  相似文献   

20.
Based on the 150 °C and 1 h microwave-assisted hydrothermal reaction of Nd(NO3)3 dissolved in deionized water with pH 10 adjusted by concentrated NH4OH solution, the phase and morphology of the product, characterized by XRD, SEM and TEM analyses, were specified as hexagonal Nd(OH)3 nanorods 50 nm in diameter and 700 nm long, growing along the [0 0 1] direction. TGA analysis showed the evaporation of adsorbed water and dehydration of Nd(OH)3 to synthesize the final pure Nd2O3 product. With 500 °C and 2 h calcination of the Nd(OH)3 self-template precursor, Nd2O3 nanorods were synthesized, retaining both the morphology and growth direction of the precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号