首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation elucidates three maleimide (MI)-based aromatic molecules as additives in electrolyte that is used in lithium ion batteries. The 1.1 M LiPF6 in ethylene carbonate (EC):propylene carbonate (PC):diethylene carbonate (DEC) (3:2:5 in volume) containing MI-based additives can prompt the formation of a solid electrolyte interface (SEI); and inhibit the entering into the irreversible state during lithium intercalation and co-intercalation. The reduction potential is 0.71-0.98 V versus Li/Li+ as determined by cyclic voltammetry (CV). The morphology and element analysis of the positive and negative electrode after the 100th charge-discharge cycle are examined by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). Moreover, the MI was used in lithium ion batteries and provided 4.9% capacity increase and 16.7% capacity retention increase when cycled at 1C/1C. The MI-based additive also ensures respectable cycle-ability of lithium ion batteries. MI is decomposed electrochemically to form a long winding narrow SEI strip on the graphite surface. This novel SEI strip not only prevents exfoliation on the graphite electrode but also stabilizes the electrolyte. The MI-based additive also ensures respectable cycle-ability of lithium ion batteries.  相似文献   

2.
Limiting current densities equivalent to the transport-controlling step of lithium ions in organic electrolytes were measured by using a rotating disk electrode (RDE). The diffusion coefficients of lithium ion in the electrolyte of PC/LiClO4, EC : DEC/LiPF6 and EC : DMC/LiPF6 were determined by the limiting current density data according to the Levich equation. The diffusion coefficients increased in the order of PC/LiClO4<EC : DEC/LiPF6<EC : DMC/ LiPF6 with respect to molar concentration of lithium salt. The maximum value of diffusivity was 1.39x10-5cm2/s for 1M LiPF6 in EC : DMC=1 : 1. Exchange current densities and transfer coefficients of each electrolyte were determined according to the Butler-Volmer equation.  相似文献   

3.
The aim of this work was to compare the electrochemical behaviors and safety performance of graphite and the lithium titanate spinel Li1.33Ti1.67O4 with half-cells versus Li metal. Their electrochemical properties in 1 M LiPF6/EC + DEC (1:1 w/w) or 1 M LiPF6/PC + DEC (1:1 w/w) at room and elevated temperatures (30 and 60 °C) have been studied using galvanostatic cycling. At 30 °C graphite has higher reversible capacity than Li1.33Ti1.67O4 when using the LiPF6/EC + DEC as electrolyte. At 60 °C graphite declines in cell capacity yet Li1.33Ti1.67O4 remains almost unchanged. In a propylene carbonate (PC) containing electrolyte, graphite electrode exfoliates and loses its mechanical integrity while Li1.33Ti1.67O4 electrode is very stable. An accelerating rate calorimeter (ARC) and microcalorimeter have been used to compare the thermal stability of lithiated lithium titanate spinel and graphite. Results show that Li1.33Ti1.67O4 may be used as an alternative anode material offering good battery performance and higher safety.  相似文献   

4.
The role of vinylene carbonate (VC) as a thermal additive to electrolytes in lithium ion batteries is studied in two aspects: the protection of liquid electrolyte species and the thermal stability of the solid electrolyte interphase (SEI) formed from VC on graphite electrodes at elevated temperatures. The nuclear magnetic resonance (NMR) spectra indicate that VC can not protect LiPF6 salt from thermal decomposition. However, the function of VC on SEI can be observed via impedance and electron spectroscopy for chemical analysis (ESCA). These results clearly show VC-induced SEI comprises polymeric species and is sufficiently stable to resist thermal damage. It has been confirmed that VC can suppress the formation of resistive LiF, and thus reduce the interfacial resistance.  相似文献   

5.
锂离子电池合金型负极材料的研究得到了广泛的关注,但是合金电极与电解液相互作用的研究非常少。本文采用电镀和热处理相结合的方法制备出Cu6Sn5合金薄膜电极,研究了各种电解液对电极性能的影响。研究结果表明,合金电极在LiN(CF2SO2)2(LITFSI)为溶质的电解液中表现出比在常用的以LiPF6作为溶质的电解液中更高的容量和更好的循环性能。合金薄膜电极在1mol·L-1 LITFSI/EC∶DEC(1∶2)电解液中具有更小的反应电阻和更大的反应电流密度,锂离子在电极上插入和脱嵌的可逆性良好,反应电阻只有在1mol·L-1 LiPF6/PC电解液中的1/10。研究结果表明,乙烯碳酸酯(EC)由于在充放电过程中会形成固体电解质界面(SEI)膜,能大幅度提高材料的电化学性能,在锂离子电池中是不可或缺的。  相似文献   

6.
Sulfolane (also referred to as tetramethylene sulfone, TMS) containing LiPF6 and vinylene carbonate (VC) was tested as a non-flammable electrolyte for a graphite |LiFePO4 lithium-ion battery. Charging/discharging capacity of the LiFePO4 electrode was ca. 150 mAh g−1 (VC content 5 wt%). The capacity of the graphite electrode after 10 cycles establishes at the level of ca. 350 mAh g−1 (C/10 rate). In the case of the full graphite |1 M LiPF6 + TMS + VC 10 wt% |LiFePO4 cell, both charging and discharging capacity (referred to cathode mass) stabilized at a value of ca. 120 mAh g−1. Exchange current density for Li+ reduction on metallic lithium, estimated from electrochemical impedance spectroscopy (EIS) experiments, was jo(Li/Li+) = 8.15 × 10−4 A cm−2. Moreover, EIS suggests formation of the solid electrolyte interface (SEI) on lithium, lithiated graphite and LiFePO4 electrodes, protecting them from further corrosion in contact with the liquid electrolyte. Scanning electron microscopy (SEM) images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. No graphite exfoliation was observed. The main decomposition peak of the LiPF6 + TMS + VC electrolyte (TG/DTA experiment) was present at ca. 275 °C. The LiFePO4(solid) + 1 M LiPF6 + TMS + 10 wt% VC system shows a flash point of ca. 150 °C. This was much higher in comparison to that characteristic of a classical LiFePO4 (solid) + 1 M LiPF6 + 50 wt% EC + 50 wt% DMC system (Tf ≈ 37 °C).  相似文献   

7.
Seung-Bok LeeSu-Il Pyun 《Carbon》2002,40(13):2333-2339
The effect of electrolyte temperature on the passivity of solid electrolyte interphase (SEI) was investigated in 1 M LiPF6-ethylene carbonate/diethyl carbonate (50:50 vol.%) electrolyte, using galvanostatic charge-discharge experiment, and ac-impedance spectroscopy combined with Fourier transform infra-red spectroscopy, and high resolution transmission electron microscopy (HRTEM). The galvanostatic charge-discharge curves at 20 °C evidenced that the irreversible capacity loss during electrochemical cycling was markedly increased with rising SEI formation temperature from 0 to 40 °C. This implies that the higher the SEI formation temperature, the more were the graphite electrodes exposed to structural damages. From both increase of the relative amount of Li2CO3 to ROCO2Li and decrease of resistance to the lithium transport through the SEI layer with increasing SEI formation temperature, it is reasonable to claim that, due to the enhanced gas evolution reactions during transformation of ROCO2Li to Li2CO3, the rising SEI formation temperature increased the number of defect sites in the SEI layer. From the analysis of HRTEM images, no significant structural destruction in bulk graphite layer was observed after charge-discharge cycles. This means that solvated lithium ions were intercalated through the defect sites in the SEI, at most, into the surface region of the graphite layer.  相似文献   

8.
In order to overcome severe capacity fading of LiMn2O4/graphite Li-ion cells at high temperature at 60 °C, fluoroethylene carbonate (FEC) was newly evaluated as an electrolyte additive. With 2 wt.% FEC addition into the electrolyte (EC/DEC/PC with 1 M LiPF6), the capacity retention at 60 °C after 130 cycles was significantly improved by about 20%. To understand the underlying principle on the capacity retention enhancement, the electrochemical properties of the cells including cell performance, impedance behavior as well as the characteristics of the interfacial properties were examined. Based on these results, it is suggested that the improved capacity retention of LiMn2O4/graphite Li-ion cells with addition of FEC especially at high temperature is mainly originated from the thin and stable SEI layer formed on the graphite anode surface.  相似文献   

9.
The influences of LiBF4, LiClO4, lithium bis(oxalato) borate (LiBOB), LiPF6 with VC and without VC, and the mixed electrolytes composed of different ratios of LiBOB and LiPF6 or LiClO4 on the electrochemical properties of Si/graphite/disordered carbon (Si/G/DC) composite electrode were systematically investigated by constant current charge-discharge and electrochemical impedance spectra (EIS) techniques. Scanning electron microscopy (SEM) was used to observe the change of electrodes in morphology after given cycle numbers. X-ray photoelectron spectroscopy (XPS) was employed to understand the influences of different mixed electrolytes on the composition of SEI layers. The results showed that Si/G/DC composite electrode in the mixed electrolytes presented better electrochemical performance than in single electrolyte. The compactness and compositions of SEI layers intensively influenced the cycle performance of Si/G/DC composite materials. LiBOB and additive VC had a good synergistic effect on the formation of the dense SEI layers. In particular, Si/G/DC in 0.5 M LiBOB + 0.38 M LiPF6 electrolytes containing VC exhibited a high reversible capacity and excellent cycle performance.  相似文献   

10.
The origin of the different Li+ intercalation behaviour of raw and jet-milled natural graphite has been investigated. Jet-milled graphite is found to cycle reversibly in equal solvent mixture of propylene carbonate (PC) and ethylene carbonate (EC), whereas raw graphite does not. Using both Al Kα and synchrotron radiation (SR) Photoelectron Spectroscopy, new insight is obtained into the formation of the solid electrolyte interphase (SEI) on the two different graphite materials during electrochemical cycling in 1 M LiPF6 in either PC:EC (1:1) or in PC with 5% vinylene carbonate (VC) as additive. Solvent reduction products are found at the surface of both raw and jet-milled graphite cycled in PC:EC (1:1), but differed in composition. The addition of VC reduces primarily the quantities of salt reaction products (LiF and LixPFy compounds) and produces a mainly organic SEI layer. Electron diffraction from the edges for raw and jet-milled graphite particles shows a more disordered surface structure in the jet-milled particles than in the raw graphite. The more disordered surface structure can serve as a physical barrier hindering PC co-intercalation and facilitating the formation of a stable SEI layer.  相似文献   

11.
The solid electrolyte interphase (SEI) layer on AlSb electrodes has been studied in Li/AlSb cells containing a LiPF6 EC/DEC electrolyte using X-ray photoelectron spectroscopy (XPS). Data were collected before SEI-formation, during formation, and after formation at 0.01 V versus Li0/Li+, and at full delithiation in cycled cells at 1.20 V. The thickness of the SEI layer increases during lithiation and decreases during delithiation. This dynamic behaviour occurs continuously on cycling the cells. The growth of the SEI layer can be attributed predominantly to the deposition of carbonaceous species below 0.50 V versus Li0/Li+; these species disappear almost completely during delithiation. The extra surface-layer formation is a consequence of the additional charge that is needed to lithiate the remaining Sb component of the micrometer-sized AlSb particles at low potentials as seen by synchrotron-based X-ray diffraction. Aluminium is not reactive to lithium alloying in this electrolyte. Relatively small amounts of LiF were detected in the AlSb SEI layers compared to that commonly found in the SEI layers on graphite electrodes.  相似文献   

12.
Interfacial structures of electrode-current collector and electrode-electrolyte have been designed to be stabilized for improved cycling performance of amorphous silicon (Si) that is considered as an alternative anode material to graphite for lithium-ion batteries. Interfacial structural stabilization involves the interdigitation of Si electrode-Cu current collector substrate by anodic Cu etching with thiol-induced self-assembly, and the formation of self-assembled siloxane on the surface of Si electrode using silane. The novel interfacial architecture possesses promoted interfacial contact area between Si and Cu, and a surface protective layer of siloxane that suppresses interfacial reactions with the electrolyte of 1 M LiPF6/ethylene carbonate (EC):diethylene carbondate (DEC). FTIR spectroscopic analyses revealed that a stable solid electrolyte interphase (SEI) layer composed of lithium carbonate, organic compounds with carboxylate metal salt and ester functionalities, and PF-containing species formed when having siloxane on Si electrode. Interfacially stabilized Si electrode exhibited a high capacity retention 80% of the maximum discharge capacity after 200 cycles between 0.1 and 1.5 V vs. Li/Li+. The data contribute to a basic understanding of interfacial structural causes responsible for the cycling performance of Si-based alloy anodes in lithium-ion batteries.  相似文献   

13.
Electrochemical characteristics of carbide-derived micro/mesoporous carbon material C(TiC) (prepared from TiC) have been studied in 1 M LiClO4, 0.5 M LiClO4 + 0.5 M LiPF6, and 1 M LiPF6 electrolyte solutions in ethylene carbonate–dimethyl carbonate solvent mixture (1:1 by volume), by using cyclic voltammetry (CV), constant current charge/discharge and electrochemical impedance spectroscopy (EIS). Region of ideal polarizability, values of series capacitance and resistance, charge transfer resistance and capacitance, and other characteristics dependent on the electrolyte anion chemical composition have been established. The dependence of Li+ ion intercalation characteristics and solid electrolyte interface (SEI) formation on the salt anion composition have been established and discussed. It was found that the three electrolytes studied are comparatively weak candidates for long-lasting high energy and power density supercapacitors.  相似文献   

14.
Wanyu Chen 《Electrochimica acta》2008,53(13):4414-4419
An ionic complex of anionic and cationic monomers was obtained by protonation of (N,N-diethylamino)ethylmethacrylate with acrylic acid. A novel ionically crosslinked polyampholytic gel electrolyte was prepared through the free radical copolymerization of the ionic complex and acrylamide in a solvent mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate (1:1:1, v/v) containing 1 mol/L of LiPF6. The impedance analysis indicated that the ionic conductivity of the polyampholytic gel electrolyte was rather close to that of solution electrolytes in the absence of a polymer at the same temperature. The temperature dependence of the conductivity was found to be well in accord with the Arrhenius behavior. The formation processes of the solid electrolyte interphase (SEI) formed in both gel and solution electrolytes during the cycles of charge-discharge were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The cyclic voltammetry curves show a strong peak at a potential of 0.68 V and an increase of the interfacial resistance from 17.2 Ω to 35.8 Ω after the first cycle of charge-discharge. The results indicate that the formation process of SEI formed in both gel and solution electrolytes was similar which could effectively prevent the organic electrolyte from further decomposition and inserting into the graphite electrode. The morphologies of SEI formed in both gel and solution electrolytes were analyzed by field emission scanning electron microscopy. The results indicate that the SEI formed in the gel electrolyte showed a rough surface consisting of smaller solid depositions. Moreover, the SEI formed in the gel electrolyte became more compact and thicker as the cycling increased.  相似文献   

15.
Methyl butyrate (MB) has been investigated as a co-solvent for lithium-ion battery electrolytes to improve the performance at low temperature (?10 to ?30 °C). The cycling performance of graphite/LiNi1/3Co1/3Mn1/3O2 cells with 1.2 M lithium tetrafluorooxalatophosphate (LiFOP) in 2:2:6 EC/EMC/MB was compared to 1.2 M LiPF6 in both 3:7 EC/EMC and 2:2:6 EC/EMC/MB. The LiFOP/MB electrolyte has a good operational temperature window and comparable cycling performance to the LiPF6 electrolyte at both room temperature and low temperature (?10 °C). However, after accelerated aging the LiFOP/MB electrolyte has worse performance at very low temperature (?30 °C) compared to LiPF6 electrolytes. Ex-situ surface analysis was conducted by scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transfer infrared spectroscopy to provide insight into the performance differences.  相似文献   

16.
The thermal behavior of fully lithiated natural graphite flakes with different particle sizes has been investigated using differential scanning calorimetry (DSC). For DSC measurements, a fully lithiated graphite anode was heated in a hermetically sealed high pressure pan with a poly vinylidene diflouride (PVdF) binder and 1 M LiPF6 solution in ethylene carbonate (EC)-diethyl carbonate (DEC) mixture. It has been founded that the particle size has a strong influence on the thermal stability of the lithiated graphite anode. The heat generation due to the solid electrolyte interface (SEI) decomposition increases with decreasing the particle size. The onset temperatures for exothermic reactions after initial SEI decomposition appear to be lower for graphite electrodes with smaller particle sizes. This is attributed to a thermal induced delithiation facilitated by reduced diffusion path and higher surface area in smaller graphites. The structural changes in graphites during DSC scan have been investigated by ex situ X-ray diffraction (XRD) and Raman spectrometer.  相似文献   

17.
Electrochemical impedance spectroscopy (EIS) was applied to porous negative graphite electrodes for lithium-ion batteries in the EC:DMC, 1 M LiPF6 electrolyte. The effect of porosity on the electrode response time was studied and a theoretical model was developed, based on free path of the current lines between subsequent reaction sites. The effect of porosity on the electrode response is evidenced by the impedance spectra in which the high frequency capacitive semicircle is distorted. Fresh electrodes (before the formation of the solid electrolyte interphase, SEI) and cycled electrodes have different shapes of the impedance spectra indicating a change of processes at the surface. In particular, the shape of the spectrum for a fresh electrode can be related to an adsorption process. Impedance spectra of fresh electrodes were fitted using a simple model that considers porosity and the assumed electrochemical processes, giving good agreement between model and data. A correlation was found between adsorption sites and irreversible charge capacity in the first cycle.  相似文献   

18.
M. Letellier  F. Chevallier 《Carbon》2007,45(5):1025-1034
We show a continuous, in situ nuclear magnetic resonance (NMR) experiment on a lithium/graphite electrochemical cell. The objective is to study a commercial graphite currently used as negative electrodes in secondary lithium batteries. A plastic cell is made, with metallic lithium as the counter electrode and 1 mol dm−3 LiPF6/ethylene carbonate (EC) + diethylcarbonate (DEC) electrolyte. The reversible capacity is 346 mAh/g and the irreversible capacity 55 mAh/g, measured in the galvanostatic mode, at a rate of C/20 (20 h for the theoretical capacity of LiC6) for the first cycle. We show the first discharge and the first charge of the cell inside the magnet and record simultaneously and regularly (in real time) static 7Li NMR spectra. As expected, we observe the quadrupolar lines characteristic of the lithium graphite intercalation compounds (GICs). During the discharge, the two types of in-plane densities of Li are successively found that correspond to the dilute LiC9, then to the dense LiC6 configuration; during the charge, we observe the successive decrease of these states. The galvanostatic curve helps to identify the stages NMR signature and the stages coexistence.  相似文献   

19.
Thermal storage of lithiated graphite electrodes has been performed between 40 and 90 °C for 8 h to 3 weeks. The results were compared for two separators: Celgard 2402 and a microporous PVdF membrane. The effects of storage on the capacity losses have been discussed with respect to the passivation film on the graphite electrodes in contact with the electrolyte solution EC:DMC:DEC (2:2:1)-1 M LiPF6. The capacity loss shows a thermally activated character, which has been related to transformations of the passivation film at moderate temperatures. At higher temperatures, reaction of the intercalated lithium takes place, controlled by Li+-ion diffusion. DSC measurements were performed on passivated and lithiated graphite electrodes. Two peaks could be distinguished. An effect of the elevated temperature storage on the intensity and onset temperature of the first peak in DSC is evidenced. This peak could be attributed to the transformation of the passivation film. The second peak is due to the diffusion of lithium ions and the subsequent reaction with the liquid electrolyte.The effect of washing the electrode with DMC was thoroughly investigated. Our results allowed to attribute the transformation of the passivation film upon DSC analysis to a reaction taking place in the presence of LiPF6.  相似文献   

20.
An admixture of commercial liquid electrolyte (LB302, 1 M solution of LiPF6 in 1:1 EC/DEC) and methyl methacrylate (MMA) was enclosed in CR2032 cells. The assembled cells were then -ray-irradiated using configurations of half cells and full cells. Through this in situ irradiation polymerization process, we obtained rechargeable lithium ion cells with poly(methyl methacrylate) (PMMA) based gel polymer electrolytes (GPE). Galvanostatic cycling, AC impedance spectroscopy, and cyclic voltammetry were employed to investigate the electrochemical properties of the cells and the gel polymer electrolyte. This PMMA-based gel polymer electrolyte was found to exhibit a high ionic conductivity (at least 10–3 S cm–1) at room temperature. Due to a significant increase in the charge transfer resistance between the GPE and the cathode, the cell impedance of a PMMA-based lithium ion cell is greater than that of a liquid-electrolyte-based cell. The discharge capacity of a LiNi0.8Co0.2O2/GPE/graphite is approximately 145 mAh g–1 for the first cycle and decreases to123 mAh g–1 after 20 cycles. In addition, a large initial cell impedance (LICI) was observed in the irradiated positive half cell. In this paper, we propose a possible mechanism related to the detachment of the PMMA layer from the lithium electrode. This detachment of the PMMA layer from the lithium electrode has not been explicitly discussed previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号