首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来;不少研究者对SMOTE做出了一些改进;较好地提高了该方法的性能。然而;如何有效地选取典型少数类样本进行过采样仍然是一个值得研究的问题。此外;被孤立的少数样本在提高模型性能方面的潜在能力也没有得到足够的重视。针对上述问题;提出了基于构造性覆盖算法(CCA)的过采样技术CMOTE。CMOTE提供了两种不同策略下选择关键样本的方法:基于覆盖内样本个数的方法与基于覆盖密度的方法。在12个典型的不平衡数据集上验证CMOTE算法的性能。实验结果表明;CMOTE算法在总体上优于对比方法;并且通过强化关键样本对模型性能的影响增强了模型的泛化能力。  相似文献   

2.
不平衡数据分析是智能制造的关键技术之一,其分类问题已成为机器学习和数据挖掘的研究热点。针对目前不平衡数据过采样策略中人工合成数据边缘化且需要降噪处理的问题,提出一种基于改进SMOTE(synthetic minority oversampling technique)和局部离群因子(local outlier factor,LOF)的过采样算法。首先对整个数据集进行[K]-means聚类,筛选出高可靠性样本进行改进SMOTE算法过采样,然后采用LOF算法删除误差大的人工合成样本。在4个UCI不平衡数据集上的实验结果表明,该方法对不平衡数据中少数类的分类能力更强,有效地克服了数据边缘化问题,将算法应用于磷酸生产中的不平衡数据,实现了该不平衡数据的准确分类。  相似文献   

3.
极速学习机(ELM)算法只对平衡数据集分类较好,对于非平衡数据集,它通常偏向多数样本类,对于少数样本类性能较低。针对这一问题,提出了一种处理不平衡数据集分类的ELM模型(ELM-CIL),该模型按照代价敏感学习的原则为少数类样本赋予较大的惩罚系数,并引入模糊隶属度值减小了外围噪声点的影响。实验表明,提出的方法不仅对提高不平衡数据集中少数类的分类精度效果较明显,而且提高了对噪声的鲁棒性。  相似文献   

4.
崔鑫  徐华  宿晨 《计算机应用》2020,40(6):1662-1667
合成少数类过抽样技术(SMOTE)中的噪声样本可能参与合成新样本,所以难以保证新样本的合理性.针对这个问题,结合聚类算法提出了改进算法CSMOTE.该算法抛弃了SMOTE在最近邻间线性插值的思想,使用少数类的簇心与其对应簇中的样本进行线性插值合成新样本,并且对参与合成的样本进行了筛选,降低了噪声样本参与合成的可能.在六...  相似文献   

5.
近年来,随着互联网技术的不断发展,入侵检测在维护网络空间安全方面发挥着越来越重要的作用。但是,由于网络入侵行为的数据稀疏性,已有的检测方法对于海量流量数据的检测效果较差,模型准确率、F-measure等指标数值较低,并且高维数据处理的成本过高。为了解决这些问题,本文提出了一种基于稀疏异常样本数据场景下的新型深度神经网络入侵检测方法,该方法能够有效地识别不平衡数据集中的异常行为。本文首先使用k均值综合少数过采样方法来处理不平衡的流量数据,解决网络流量数据类别分布不平衡问题,平衡网络流量数据分布。再采用自动编码器来处理海量高维数据并训练检测模型,来提升海量高维流量中异常行为的检测精度,并在两个真实典型的入侵检测数据集上进行了大量的实验。实验结果表明,本文所提出的方法在两个真实典型数据集上的检测准确率分别为99.06%和99.16%, F-measure分别为99.15%和98.22%。相比于常用的欠采样和过采样方法, k均值综合少数过采样技术能够有效地解决网络流量数据类别分布不平衡的问题,提升模型对低频攻击行为的检测效果。同时,与已有的网络入侵检测方法相比,本文所提出的方法在准确率、F-m...  相似文献   

6.
    
Learning on imbalanced datasets, where one class is underrepresented, is problematic and important at the same time. On the one hand, a limited number of positive examples restricts the generalization ability of classifiers. On the other hand, often, the class of interest is such exactly because it is rare. The Synthetic Minority Oversampling TEchnique (SMOTE) is a preprocessing method that creates new synthetic examples by interpolating between neighboring instances. In this work, an enhancement to SMOTE is proposed, which characterizes synthetic instances as solutions of attraction‐repulsion problems among the neighboring data points. Experimental evaluation shows an improvement in the positive predictive power of classification.  相似文献   

7.
提出了一种基于局部多核支持向量机的视频镜头边界检测方法.利用视频图像相邻帧的时空信息构建视频中间特征,在此基础上利用局部多核支持向量机将视频帧划分为边界帧和非边界帧.为了提高基于全局优化的多核支持向量机的检测精度,利用局部敏感哈希算法将视频帧投影全哈希子空间,结合多核学习方法为各个哈希子空间构建局部多核支持向量机,利用SMOTE上采样技术解决了视频图像边界帧和普通帧的不平衡问题.试验结果表明,本文提出的镜头边界检测方法的金全率和查准率得到了提高.  相似文献   

8.
    
Our living environments are being gradually occupied with an abundant number of digital objects that have networking and computing capabilities. After these devices are plugged into a network, they initially advertise their presence and capabilities in the form of services so that they can be discovered and, if desired, exploited by the user or other networked devices. With the increasing number of these devices attached to the network, the complexity to configure and control them increases, which may lead to major processing and communication overhead. Hence, the devices are no longer expected to just act as primitive stand-alone appliances that only provide the facilities and services to the user they are designed for, but also offer complex services that emerge from unique combinations of devices. This creates the necessity for these devices to be equipped with some sort of intelligence and self-awareness to enable them to be self-configuring and self-programming. However, with this "smart evolution", the cognitive load to configure and control such spaces becomes immense. One way to relieve this load is by employing artificial intelligence (AI) techniques to create an intelligent "presence" where the system will be able to recognize the users and autonomously program the environment to be energy efficient and responsive to the user's needs and behaviours. These AI mechanisms should be embedded in the user's environments and should operate in a non-intrusive manner. This paper will show how computational intelligence (CI), which is an emerging domain of AI, could be employed and embedded in our living spaces to help such environments to be more energy efficient, intelligent, adaptive and convenient to the users.  相似文献   

9.
10.
针对不平衡数据集分类效果不理想的问题,提出了一种新的基于混合采样的不平衡数据集算法(BSI)。通过引进“变异系数”找出样本的稀疏域和密集域,针对稀疏域中的少数类样本,提出了一种改进SMOTE算法的过采样方法(BSMOTE);对密集域中的多数类样本,提出了一种改进的欠采样方法(IS)。通过在六种不平衡数据集上的实验表明,该算法与传统算法相比,取得了更高的G-mean值、F-value值、AUC值,有效改善了不平衡数据集的综合分类性能。  相似文献   

11.
为了提高育种领域选种的准确率同时缩短品种培育年限,利用改进的随机森林算法根据小麦育种历史数据构建评价模型. 在训练分类器之前,利用改进的SMOTE算法来改善训练样本集中的非平衡现象;在基分类器训练完成后,测试单个分类器的性能并剔除性能较差的基分类器,实现随机森林中基分类器的筛选. 实验结果表明,文中提出的算法在小麦种质评价方面取得了不错的效果,可以辅助育种工作者进行品种选育.  相似文献   

12.
针对目标领域带标签数据偏少的问题,综合运用半监督学习、BootStrapping、数据分组、AdaBoost、集成学习等策略与技术,提出了一种基于分组提升集成的跨领域文本情感分类方法。该方法首先利用少量人工标注的目标领域数据,基于合成过抽样技术产生一定数量的虚拟数据。在此基础上,采用BootStrapping方法获得更多目标领域高可信度的带标签数据。在分类器的构建方面,首先将源领域的带标签数据等量分割,并分别与目标领域带标签数据组合,在每个组合数据块上运用AdaBoost方法提升地训练多个分类器,并将这些分类器线性地集成为一个分类器。在亚马逊购物网站4个领域的情感数据集上的实验表明,基于分组提升集成的跨领域文本情感分类方法一定程度上提高了跨领域文本情感分类的精度。  相似文献   

13.
针对少数类样本合成过采样技术(Synthetic Minority Over-Sampling Technique, SMOTE)在合成少数类新样本时会带来噪音问题,提出了一种改进降噪自编码神经网络不平衡数据分类算法(SMOTE-SDAE)。该算法首先通过SMOTE方法合成少数类新样本以均衡原始数据集,考虑到合成样本过程中会产生噪音的影响,利用降噪自编码神经网络算法的逐层无监督降噪学习和有监督微调过程,有效实现对过采样数据集的降噪处理与数据分类。在UCI不平衡数据集上实验结果表明,相比传统SVM算法,该算法显著提高了不平衡数据集中少数类的分类精度。  相似文献   

14.
基于改进SMOTE的非平衡数据集分类研究   总被引:1,自引:0,他引:1  
针对SMOTE(Synthetic Minority Over-sampling Technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法(SSMOTE)。该算法的关键是将支持度概念和轮盘赌选择技术引入到SMOTE中,并充分利用了异类近邻的分布信息,实现了对少数类样本合成质量和数量的精细控制。将SSMOTE与KNN(K-Nearest Neighbor)算法结合来处理不平衡数据集的分类问题。通过在UCI数据集上与其他重要文献中的相关算法进行的大量对比实验表明,SSMOTE在新样本的整体合成效果上表现出色,有效提高了KNN在非平衡数据集上的分类性能。  相似文献   

15.
基于遗传算法的多移动机器人协调路径规划   总被引:32,自引:1,他引:31       下载免费PDF全文
孙树栋  林茂 《自动化学报》2000,26(5):672-676
采用链接图法建立了机器人工作空间模型;应用遗传算法规划多移动机器人运动路径;引入适应值调整矩阵新概念,以达到对多移动机器人运动路径的全局优化;基于面向对象技术,研制成功多移动机器人路径规划动态仿真系统.大量仿真实验结果表明,所提方法可行.  相似文献   

16.
Credit analysts generally assess the risk of credit applications based on their previous experience. They frequently employ quantitative methods to this end. Among the methods used, Artificial Neural Networks have been particularly successful and have been incorporated into several computational tools. However, the design of efficient Artificial Neural Networks is largely affected by the definition of adequate values for their free parameters. This article discusses a new approach to the design of a particular Artificial Neural Networks model, RBF networks, through Genetic Algorithms. It presents an overall view of the problems involved and the different approaches employed to optimize Artificial Neural Networks genetically. For such, several methods proposed in the literature for optimizing RBF networks using Genetic Algorithms are discussed. Finally, the model proposed by the authors is described and experimental results using this model for a credit risk assessment problem are presented.  相似文献   

17.
基于神经网络模型的直接优化预测控制   总被引:18,自引:1,他引:18  
针对具有时延的非线性系统提出了一种基于神经网络模型直接优于的预测控制。  相似文献   

18.
提出新的生物识别方法,以心电图信号来识别人员的身份,心电图被用来诊断心脏某些方面的疾病,其与每个人的心脏位置、大小及胸部构造,年龄、性别、体重、情绪、运动状况等因素有关,因此每个人的心电图不尽相同。所采用的单导程心电图为低频一维信号,易于处理,信号直接可由贴在双手上的电极片测得,其量测电路成本低廉.方法是应用遗传算法与粒子群最佳化来调整动态模型参数,使其合成波形与受测者心电图逼近,再将此组参数输入到神经网络来识别个人身份,实验结果显示对于30个人的识别成功率可达96%以上。  相似文献   

19.
Fingerprint matching has been approached using various criteria based on different extracted features. However, robust and accurate fingerprint matching is still a challenging problem. In this paper, we propose an improved integrated method which operates by first suggesting a consensus matching function, which combines different matching criteria based on heterogeneous features. We then devise a genetically guided approach to optimise the consensus matching function for simultaneous fingerprint alignment and verification. Since different features usually offer complementary information about the matching task, the consensus function is expected to improve the reliability of fingerprint matching. A related motivation for proposing such a function is to build a robust criterion that can perform well over a variety of different fingerprint matching instances. Additionally, by employing the global search functionality of a genetic algorithm along with a local matching operation for population initialisation, we aim to identify the optimal or near optimal global alignment between two fingerprints. The proposed algorithm is evaluated by means of a series of experiments conducted on public domain collections of fingerprint images and compared with previous work. Experimental results show that the consensus function can lead to a substantial improvement in performance while the local matching operation helps to identify promising initial alignment configurations, thereby speeding up the verification process. The resulting algorithm is more accurate than several other proposed methods which have been implemented for comparison.  相似文献   

20.
陈国龙 《计算机科学》2002,29(11):141-143
1 引言设计计算机通信网的一个基本要求是网络全局有效性,即连通概率。从网络角度,连通概率指的是网络至少简单连通。其除依赖于各计算机系统和通信能力外,主要依赖于通信链路的拓扑设计。对一个给定计算机通信网的最大全局可靠性的网络拓扑优化设计,人们已提出许多启发式算法,但这些算法并未给出精确解。本文采用遗传算法进行设计,成功地解决了这类问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号