首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a combination of capillary electrophoresis (CE) and patterned fluorescence correlation spectroscopy (patterned FCS), we have developed a new technique for performing electrophoretic analysis independently of the initial length of injected analyte plugs. In t histechnique, which is abbreviated as CE/patterned FCS, fluorescent analyte molecules dispersed continuously in a capillary migrate through a stationary interference pattern created by two intersecting excitation laser beams, and their fluorescence emission is monitored. We prove theoretically that the power spectrum of fluctuations in the fluorescence intensity gives a virtual electropherogram. The profile of the electropherogram and the number of theoretical plates are in general obtained by using analytical methods. Characterizing the capillary length within the excitation beams as the effective length, we compare CE/ patterned FCS with conventional CE. Numerical simulations on capillary gel electrophoresis of DNA predict that the optimized CE/patterned FCS is superior to conventional CE when the effective length is shorter than 1 cm. The experimental feasibility of this technique is demonstrated in the fluorometry of TOTO-1-stained DNA. For an effective length of 740 microm, a maximum number of plates of 7400, and a resolution of 1.0 were obtained with a one-component injection of pUC18 DNA and a two-component injection of pUC 18 DNA and lambda DNA, respectively.  相似文献   

2.
Gliadin proteins are primarily responsible for celiac disease. As gliadin is a complex mixture of proteins difficult to solubilize and to extract from food, it is difficult to develop an assay capable of accurate quantization of gliadin in food for celiac patients. In this work, we present an advanced fluorescence assay for the detection of traces of gliadin in food. The described assay is based on measurement of the fluctuations of fluorescein-labeled gliadin peptides (GP) in a focused laser beam in the absence and in the presence of anti-GP antibodies. A competitive assay based on the utilization of unlabeled GP was developed. The obtained results indicate that the combination of high-avidity IgG antibodies together with the innovative fluorescence immunoassay strategy resulted in a gluten detection limit of 0.006 ppm, which it is much lower than the values reported in the literature.  相似文献   

3.
The capsid of human rhinovirus serotype 2, consisting of four viral proteins, was fluorescence-labeled with fluorescein isothiocyanate and analyzed by capillary electrophoresis using UV and laser-induced fluorescence detection. Heat denaturation, proteolytic digestion, and receptor binding were applied for confirmation of the identity of the peak with the labeled virus. Incomplete derivatization with the fluorophore preserved the affinity of the virus for its receptor, indicating that its cell entry pathway is unperturbed by this chemical modification; indeed, an infectivity assay confirms that the labeled virus samples are infectious. The results show that fluorescence labeling of the viral capsid might lead to a valuable probe for studying infection processes in the living cell.  相似文献   

4.
A six-channel microfluidic immunoassay device with a scanned fluorescence detection system is described. Six independent mixing, reaction, and separation manifolds are integrated within one microfluidic wafer, along with two optical alignment channels. The manifolds are operated simultaneously and data are acquired using a singlepoint fluorescence detector with a galvano-scanner to step between separation channels. A detection limit of 30 pM was obtained for fluorescein with the scanning detector, using a 7.1-Hz sampling rate for each of the reaction manifolds and alignment channels (57-Hz overall sampling rate). Simultaneous direct immunoassays for ovalbumin and for anti-estradiol were performed within the microfluidic device. Mixing, reaction, and separation could be performed within 60 s in all cases and within 30 s under optimized conditions. Simultaneous calibration and analysis could be performed with calibrant in several manifolds and sample in the other manifolds, allowing a complete immunoassay to be run within 30 s. Careful chip conditioning with methanol, water, and 0.1 M NaOH resulted in peak height RSD values of 3-8% (N = 5 or 6), allowing for cross-channel calibration. The limit of detection (LOD) for an anti-estradial assay obtained in any single channel was 4.3 nM. The LOD for the cross-channel calibration was 6.4 nM. Factors influencing chip and detection system design and performance are discussed in detail.  相似文献   

5.
With examination of diffusion in heterogeneous media through fluorescence correlation spectroscopy, the temporal correlation of the intensity signal shows a long correlation tail and the characteristic diffusion time results are no longer easy to determine. Excluded volume and sticking effects have been proposed to justify such deviations from the standard behavior since all contribute and lead to anomalous diffusion mechanisms . Usually, the anomalous coefficient embodies all the effects of environmental heterogeneity providing too general explanations for the exotic diffusion recorded. Here, we investigated whether the reason of anomalies could be related to a lack of an adequate interpretative model for heterogeneous systems and how the presence of obstacles on the detection volume length scale could affect fluorescence correlation spectroscopy experiments. We report an original modeling of the autocorrelation function where fluorophores experience reflection or adsorption at a wall placed at distances comparable with the detection volume size. We successfully discriminate between steric and adhesion effects through the analysis of long time correlations and evaluate the adhesion strength through the evaluation of probability of being adsorbed and persistence time at the wall on reference data. The proposed model can be readily adopted to gain a better understanding of intracellular and nanoconfined diffusion opening the way for a more rational analysis of the diffusion mechanism in heterogeneous systems and further developing biological and biomedical applications.  相似文献   

6.
Microfabricated system for parallel single-cell capillary electrophoresis   总被引:4,自引:0,他引:4  
Munce NR  Li J  Herman PR  Lilge L 《Analytical chemistry》2004,76(17):4983-4989
Performing single-cell electrophoresis separations using multiple parallel microchannels offers the possibility of both increasing throughput and eliminating cross-contamination between different separations. The instrumentation for such a system requires spatial and temporal control of both single-cell selection and lysis. To address these problems, a compact platform is presented for single-cell capillary electrophoresis in parallel microchannels that combines optical tweezers for cell selection and electromechanical lysis. Calcein-labeled acute myloid leukemia (AML) cells were selected from an on-chip reservoir and transported by optical tweezers to one of four parallel microfluidic channels. Each channel entrance was manufactured by F2-laser ablation to form a 20- to 10-microm tapered lysis reservoir, creating an injector geometry effective in confining the cellular contents during mechanical shearing of the cell at the 10-microm capillary entrance. The contents of individual cells were simultaneously injected into parallel channels resulting in electrophoretic separation as recorded by laser-induced fluorescence of the labeled cellular contents.  相似文献   

7.
This paper presents a cost-effective portable photodetection system for capillary electrophoresis absorptiometry. By using a CMOS BDJ (buried double p–n junction) detector, a dual-wavelength method for absorbance measurement is implemented. This system includes associated electronics for low-noise pre-amplification and A/D conversion, followed by digital signal acquisition and processing. Two signal processing approaches are adopted to enhance the signal to noise ratio. One is variable time synchronous detection, which optimizes the sensitivity and measuring rate compared to a conventional synchronous detection technique. The other is a statistical approach based on principal component analysis, which allows optimal estimation of detected signal. This system has been designed and tested in capillary electrophoresis conditions. Its operation has been verified with performances comparable to those of a commercialized spectrophotometric system (HP-3D CE). With potential on-chip integration of associated electronics, it may be operated as an integrable detection module for microchip electrophoresis and other microanalysis systems.  相似文献   

8.
Two-beam fluorescence cross-correlation spectroscopy was used for multicomponent electrophoretic analysis of positive and negative ions flowing continuously, and in opposite directions, through a polymer-coated electrophoresis capillary. Cross-correlation analysis of the fluorescence monitored from two spatially offset microscopic detection volumes revealed the magnitude and direction of the electrophoretic flow velocity of each analyte. This enabled resolution of a three-component mixture containing nanomolar concentrations of cationic rhodamine 6G and anionic 5-carboxytetramethylrhodamine (TAMRA) and TAMRA-labeled single-stranded DNA in aqueous buffer. The relative concentrations of each analyte, determined from the cross-correlation analysis, agreed with known values within experimental error. This technique is sensitive to molecular processes occurring on a millisecond time scale and will prove useful for monitoring rapid fluctuations in the magnitude and direction of the electrophoretic flow velocity caused by spontaneous chemical reactions or conformational transformations at thermodynamic equilibrium.  相似文献   

9.
Q H Wan  X C Le 《Analytical chemistry》1999,71(19):4183-4189
Capillary electrophoresis (CE) combined with molecular recognition for ultrasensitive bioanalytical applications often requires the formation of stable complexes between an analyte and its binding partner. Previous studies of binding interactions using CE involve multiple-step titration experiments and are time-consuming. We describe a simple method based on laser-induced fluorescence polarization (LIFP) detection for CE separation, which allows for on-line monitoring of affinity complex formation. Because fluorescence polarization is sensitive to changes in the rotational diffusion arising from molecular association or dissociation, it is capable of providing information on the formation of affinity complexes prior to or during CE separation. Applications of the CE/LIFP method to three binding systems including vancomycin and its antibody, staphylococcal enterotoxin A and its antibody, and trp operator and trp repressor were demonstrated, representing peptide-protein, protein-protein, and DNA-protein interactions. The affinity complexes were readily distinguished from the unbound molecules on the basis of their fluorescence polarization. The relative increase in fluorescence polarization upon complex formation varied with the molecular size of the binding pairs.  相似文献   

10.
X-ray fluorescence spectroscopy is demonstrated here as a novel, element-specific detector for capillary electrophoresis. Monochromatic 10 keV X-rays from a synchrotron light source are used to excite core electrons, causing emission of characteristic Kalpha X-ray fluorescence (XRF) lines. Using this technique, XRF energies provide elemental identification, while XRF intensities can be used to quantitate the metal composition of each eluent. An X-ray transparent polymer coupling is used to create a window for the on-line, X-ray detection. This coupling contributes no measurable extra-column variance, and electrophoretic mobilities for the metal complexes used as model solutes are highly reproducible. The combination of XRF detection with capillary electrophoresis (CE-XRF) creates the first on-line detection system that is element-specific, nondestructive, and directly applicable to a broad range of applications including nonelectroactive species. CE-XRF is successfully demonstrated here for high binding-constant complexes of Fe(III), Co(II), Cu(II), and Zn(II). Within a single injection, electropherograms are obtained for each element of interest, with the element identity obtained directly from the emission energy. In contrast with ICPMS, this detection technique is directly on-line and does not require volatilization of the eluent. As a result, element-specific detection is not limited by the sample or the buffer volatility or atomization efficiency. Simultaneous XRF and UV absorbance detection can be used to provide an on-line determination of metal/chelate ratios. Although XRF detection limits are presently only in the 0.1 mM (0.5 ng) range, both collection geometry and incident intensity have yet to be optimized. Further optimization is expected to enhance this detection limit by another 2-3 orders of magnitude. As a result, the advent of XRF detection combined with the separating power of CE presents new possibilities for on-line, element-specific analysis.  相似文献   

11.
A fluorescence detection system for capillary zone electrophoresis is described in which a charged-coupled device (CCD) views a 2-cm section of an axially illuminated capillary column. The CCD is operated in two readout modes: a snapshot mode that acquires a series of images in wavelength and capillary position, and a time-delayed integration mode that allows long exposure times of the moving analyte zones. By use of the latter mode, the ability to differentiate a species based on both its fluorescence emission and migration rate is demonstrated for fluorescein and sulforhodamine 101. The detection limit for fluorescein isothiocyanate (FITC) is 1.2 X 10(-20) mol; detection limits for FITC-amino acids are in the (2-8) X 10(-20) mol range.  相似文献   

12.
This paper describes the first use of frequency-domain fluorescence lifetime for multiplex detection of DNA restriction fragments in capillary electrophoresis (CE). The fragments were labeled with monomeric intercalating dyes that can be excited by either the 488- or 514-nm line of an argon ion laser and have lifetimes in the range of 0.5-2.5 ns. We were able to achieve multiplex lifetime detection in the CE separation of a restriction fragment digest and a DNA size ladder in the same run, for fragments shorter than 700 bp. Different gel buffer systems, including a modified polyacrylamide gel and several tris-borate-EDTA/hydroxyethylcellulose (TBE/HEC) gels, were investigated for separation and detection of the dye-labeled DNA fragments. Best results for both electrophoretic resolution and lifetime detection were obtained using a gel containing 1% high molecular weight (90,000-105,000) HEC and 0.3% low molecular weight (24,000-27,000) HEC in TBE buffer.  相似文献   

13.
Wang G  Geng L 《Analytical chemistry》2000,72(19):4531-4542
A new spectroscopic dimension-fluorescence intensity correlation--is introduced to enhance peak resolution and species identification in capillary electrophoresis. In two-dimensional correlation CE, a conventional electropherogram is spread into two dimensions through cross-correlation analysis of fluorescence time response. A laser that is sinusoidally modulated in intensity is used as the excitation source. Three channels of information are collected during a CE run: the steady-state intensity, the ac amplitude, and the phase-resolved fluorescence intensity. The correlation between two chosen channels is then evaluated. A two-dimensional correlation electropherogram consists of a plot of the correlation intensity versus two axes of migration time. Through correlation analysis, species discrimination and peak resolution are significantly enhanced without having to physically separate the solutes. Two-dimensional correlation CE showed complete resolution between two overlapping sample peaks with a resolution of 0.28 in the conventional one-dimensional electropherogram. In separations of polycyclic aromatic hydrocarbons by micellar electrokinetic chromatography (MEKC), two-dimensional correlation analysis resolved all overlapping elution peaks unseparable by one-dimensional MEKC, demonstrating the utility of 2D correlation in separation method development. The capability of 2D correlation CE in species identification is demonstrated with a sequence of 39 consecutively injected peaks containing four fluorescent dyes. Species identification in sequencing is achieved without complex data treatment in two-dimensional correlation CE.  相似文献   

14.
In field-amplified injection in capillary electrophoresis (CE), the capillary is filled with two buffering zones of different ionic strength; this induces an amplified electrical field in the low ionic strength zone and a lower field in the high ionic strength zone, making sample stacking feasible. The electroosmotic flow (eof) usually observed in CE, however, displaces the low field zone and induces an extra band broadening preventing any CE separation in the field-amplified zone. These limitations have originated the restricted use of field amplification in CE only for stacking purposes. For the first time, in this work it is theoretically shown and experimentally corroborated that CE separation speed and efficiency can simultaneously be increased if the whole separation is performed in the field-amplified zone, using what we have called field amplified separation in capillary electrophoresis (FAsCE). The possibilities of this new CE mode are investigated using a new and simple coating able to provide near-zero eof at the selected separation pH. Using FAsCE, improvements of 20% for separation speed and 40% for efficiency are achieved. Moreover, a modified FAsCE approach is investigated filling the capillary with the high ionic strength buffer up to the interior of the detection window. Under these conditions, an additional 3-fold increase in sensitivity is also observed. The most interesting results were obtained combining the short-end injection mode and this modified FAsCE approach. Under these conditions, a part of a 3-fold improvement in efficiency and sensitivity, the total analysis time was drastically reduced to 40 s, giving rise to a time reduction of more than 7-fold compared to normal CE. This speed enhancement brings about one of the fastest CE separations achieved using capillaries, demonstrating the great possibilities of FAsCE as a new, sensitive, efficient, and fast CE separation mode.  相似文献   

15.
Over the years fluorescence correlation spectroscopy (FCS) has proven to be a useful technique that has been utilized in several fields of study. Although FCS initially suffered from poor signal-to-noise ratios, the incorporation of confocal microscopy has overcome this drawback and transformed FCS into a sensitive technique with high figures of merit. In addition, tandem methods have evolved to include dual-color cross-correlation, total internal reflection fluorescence correlation, and fluorescence lifetime correlation spectroscopy combined with time-correlated single-photon counting. In this review, we discuss several applications of FSC for biochemical, microfluidic, and cellular investigations.  相似文献   

16.
Wu S  Lu JJ  Wang S  Peck KL  Li G  Liu S 《Analytical chemistry》2007,79(20):7727-7733
A novel staining method and the associated fluorescent dye were developed for protein analysis by capillary SDS-PAGE. The method strategy is to synthesize a pseudo-SDS dye and use it to replace some of the SDS in SDS-protein complexes so that the protein can be fluorescently detected. The pseudo-SDS dye consists of a long, straight alkyl chain connected to a negative charged fluorescent head and binds to proteins just as SDS. The number of dye molecules incorporated with a protein depends on the dye concentration relative to SDS in the sample solution, since SDS and dye bind to proteins competitively. In this work, we synthesized a series of pseudo-SDS dyes, and tested their performances for capillary SDS-PAGE. FT-16 (a fluorescein molecule linked with a hexadodecyl group) seemed to be the best among all the dyes tested. Although the numbers of dye molecules bound to proteins (and the fluorescence signals from these protein complexes) were maximized in the absence of SDS, high-quality separations were obtained when co-complexes of SDS-protein-dye were formed. The migration time correlates well with protein size even after some of the SDS in the SDS-protein complexes was replaced by the pseudo-SDS dye. Under optimized experimental conditions and using a laser-induced fluorescence detector, limits of detection of as low as 0.13 ng/mL (bovine serum albumin) and dynamic ranges over 5 orders of magnitude in which fluorescence response is proportional to the square root of analyte concentration were obtained. The method and dye were also tested for separations of real-world samples from E. coli.  相似文献   

17.
Chemiluminescence (CL) detection integrated with a microchip capillary electrophoresis (MCE) system that was fabricated in poly(dimethylsiloxane) was demonstrated for chemical and biochemical analyses. Two model CL systems were involved here: metal ion-catalyzed luminol-peroxide reaction and dansyl species conjugated peroxalate-peroxide reaction. Different strategies based on three chip patterns (cross, cross combining with Y, and cross combining with V) to perform on-line CL detection for MCE were evaluated and compared in terms of sensitivity, reproducibility, and peak symmetry. The chip pattern of cross combining with Y proved to be promising for the luminol-peroxide CL system, while the chip pattern of cross combining with V was preferred for the peroxalate-peroxide system where CL reagent could not be effectively transported by electroosmotic flow. A detection limit down to submicromolar concentrations (midattomole) was achieved with good reproducibility and symmetric peak shape. Successful separation of three metal cations such as Cr(III), Co(II), and Cu(II) and chiral recognition of dansyl phenylalanine enantiomers within 1 min revealed distinct advantages of combining MCE with CL detection for rapid and sensitive analyses.  相似文献   

18.
A spectral analysis of human blood serum was undertaken by fiber-optic evanescent-wave spectroscopy (FEWS) by the use of a Fourier-transform infrared spectrometer. A special cell for the FEWS measurements was designed and built that incorporates an IR-transmitting silver halide fiber and a means for introducing the blood-serum sample. Further improvements in analysis were obtained by the adoption of multivariate calibration techniques that are already used in clinical chemistry. The partial least-squares algorithm was used to calculate the concentrations of cholesterol, total protein, urea, and uric acid in human blood serum. The estimated prediction errors obtained (in percent from the average value) were 6% for total protein, 15% for cholesterol, 30% for urea, and 30% for uric acid. These results were compared with another independent prediction method that used a neural-network model. This model yielded estimated prediction errors of 8.8% for total protein, 25% for cholesterol, and 21% for uric acid.  相似文献   

19.
A rotary valve nanoinjector was devised for use in capillary electrophoresis (CE) and capillary electrochromatography (CEC). A fused-silica capillary tip was inserted in a small through-hole in the rotor. The narrow and short capillary tip, with an inner volume of 6-24 nL, was embedded in the hole using epoxy resin. The injection volume was confirmed chromatographically by comparing the peak areas obtained with the nanoinjector to those of a conventional injector. In addition, both the rotor and stator of the injector were made of a nonconducting material, polyimide resin, to be utilized for CE and CEC. The application of the nanoinjector for CE was demonstrated.  相似文献   

20.
A novel capillary NMR coupling configuration, which offers the possibility of combining capillary zone electrophoresis (CZE), capillary HPLC (CHPLC), and for the first time capillary electrochromatography (CEC) with nuclear magnetic resonance (NMR), has been developed. The hyphenated technique has a great potential for the analysis of chemical, pharmaceutical, biological, and environmental samples. The versatile system allows facile changes between these three different separation methods. A special NMR capillary containing an enlarged detection cell suitable for on-line NMR detection and measurements under high voltage has been designed. The acquisition of 1D and 2D NMR spectra in stopped-flow experiments is also possible. CHPLC NMR has been performed with samples of hop bitter acids. The identification and structure elucidation of humulones and isohumulones by on-line and stopped-flow spectra has been demonstrated. The suitability of the configuration for electrophoretic methods has been investigated by the application of CZE and CEC NMR to model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号